| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funssres |  |-  ( ( Fun F /\ G C_ F ) -> ( F |` dom G ) = G ) | 
						
							| 2 |  | funres11 |  |-  ( Fun `' F -> Fun `' ( F |` dom G ) ) | 
						
							| 3 |  | cnveq |  |-  ( G = ( F |` dom G ) -> `' G = `' ( F |` dom G ) ) | 
						
							| 4 | 3 | funeqd |  |-  ( G = ( F |` dom G ) -> ( Fun `' G <-> Fun `' ( F |` dom G ) ) ) | 
						
							| 5 | 2 4 | imbitrrid |  |-  ( G = ( F |` dom G ) -> ( Fun `' F -> Fun `' G ) ) | 
						
							| 6 | 5 | eqcoms |  |-  ( ( F |` dom G ) = G -> ( Fun `' F -> Fun `' G ) ) | 
						
							| 7 | 1 6 | syl |  |-  ( ( Fun F /\ G C_ F ) -> ( Fun `' F -> Fun `' G ) ) | 
						
							| 8 | 7 | ex |  |-  ( Fun F -> ( G C_ F -> ( Fun `' F -> Fun `' G ) ) ) | 
						
							| 9 | 8 | com23 |  |-  ( Fun F -> ( Fun `' F -> ( G C_ F -> Fun `' G ) ) ) | 
						
							| 10 | 9 | 3imp |  |-  ( ( Fun F /\ Fun `' F /\ G C_ F ) -> Fun `' G ) |