Step |
Hyp |
Ref |
Expression |
1 |
|
funssres |
|- ( ( Fun F /\ G C_ F ) -> ( F |` dom G ) = G ) |
2 |
|
funres11 |
|- ( Fun `' F -> Fun `' ( F |` dom G ) ) |
3 |
|
cnveq |
|- ( G = ( F |` dom G ) -> `' G = `' ( F |` dom G ) ) |
4 |
3
|
funeqd |
|- ( G = ( F |` dom G ) -> ( Fun `' G <-> Fun `' ( F |` dom G ) ) ) |
5 |
2 4
|
syl5ibr |
|- ( G = ( F |` dom G ) -> ( Fun `' F -> Fun `' G ) ) |
6 |
5
|
eqcoms |
|- ( ( F |` dom G ) = G -> ( Fun `' F -> Fun `' G ) ) |
7 |
1 6
|
syl |
|- ( ( Fun F /\ G C_ F ) -> ( Fun `' F -> Fun `' G ) ) |
8 |
7
|
ex |
|- ( Fun F -> ( G C_ F -> ( Fun `' F -> Fun `' G ) ) ) |
9 |
8
|
com23 |
|- ( Fun F -> ( Fun `' F -> ( G C_ F -> Fun `' G ) ) ) |
10 |
9
|
3imp |
|- ( ( Fun F /\ Fun `' F /\ G C_ F ) -> Fun `' G ) |