Step |
Hyp |
Ref |
Expression |
1 |
|
f1fn |
|- ( F : A -1-1-> B -> F Fn A ) |
2 |
1
|
adantr |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F Fn A ) |
3 |
|
simpr |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> ran F C_ C ) |
4 |
|
df-f |
|- ( F : A --> C <-> ( F Fn A /\ ran F C_ C ) ) |
5 |
2 3 4
|
sylanbrc |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A --> C ) |
6 |
|
df-f1 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
7 |
6
|
simprbi |
|- ( F : A -1-1-> B -> Fun `' F ) |
8 |
7
|
adantr |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> Fun `' F ) |
9 |
|
df-f1 |
|- ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) ) |
10 |
5 8 9
|
sylanbrc |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A -1-1-> C ) |