| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1fn |
|- ( F : A -1-1-> B -> F Fn A ) |
| 2 |
1
|
adantr |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F Fn A ) |
| 3 |
|
simpr |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> ran F C_ C ) |
| 4 |
|
df-f |
|- ( F : A --> C <-> ( F Fn A /\ ran F C_ C ) ) |
| 5 |
2 3 4
|
sylanbrc |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A --> C ) |
| 6 |
|
df-f1 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
| 7 |
6
|
simprbi |
|- ( F : A -1-1-> B -> Fun `' F ) |
| 8 |
7
|
adantr |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> Fun `' F ) |
| 9 |
|
df-f1 |
|- ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) ) |
| 10 |
5 8 9
|
sylanbrc |
|- ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A -1-1-> C ) |