| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
| 2 |
|
fssres |
|- ( ( F : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B ) |
| 3 |
1 2
|
sylan |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C --> B ) |
| 4 |
|
df-f1 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
| 5 |
|
funres11 |
|- ( Fun `' F -> Fun `' ( F |` C ) ) |
| 6 |
4 5
|
simplbiim |
|- ( F : A -1-1-> B -> Fun `' ( F |` C ) ) |
| 7 |
6
|
adantr |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> Fun `' ( F |` C ) ) |
| 8 |
|
df-f1 |
|- ( ( F |` C ) : C -1-1-> B <-> ( ( F |` C ) : C --> B /\ Fun `' ( F |` C ) ) ) |
| 9 |
3 7 8
|
sylanbrc |
|- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-> B ) |