| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1dm |  |-  ( F : A -1-1-> B -> dom F = A ) | 
						
							| 2 |  | dmexg |  |-  ( F e. V -> dom F e. _V ) | 
						
							| 3 |  | eleq1 |  |-  ( A = dom F -> ( A e. _V <-> dom F e. _V ) ) | 
						
							| 4 | 3 | eqcoms |  |-  ( dom F = A -> ( A e. _V <-> dom F e. _V ) ) | 
						
							| 5 | 2 4 | imbitrrid |  |-  ( dom F = A -> ( F e. V -> A e. _V ) ) | 
						
							| 6 | 1 5 | syl |  |-  ( F : A -1-1-> B -> ( F e. V -> A e. _V ) ) | 
						
							| 7 | 6 | impcom |  |-  ( ( F e. V /\ F : A -1-1-> B ) -> A e. _V ) | 
						
							| 8 |  | f1dmvrnfibi |  |-  ( ( A e. _V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) | 
						
							| 9 | 7 8 | sylancom |  |-  ( ( F e. V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) |