| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fabexg.1 |  |-  F = { x | ( x : A --> B /\ ph ) } | 
						
							| 2 |  | xpexg |  |-  ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V ) | 
						
							| 3 |  | pwexg |  |-  ( ( A X. B ) e. _V -> ~P ( A X. B ) e. _V ) | 
						
							| 4 |  | fssxp |  |-  ( x : A --> B -> x C_ ( A X. B ) ) | 
						
							| 5 |  | velpw |  |-  ( x e. ~P ( A X. B ) <-> x C_ ( A X. B ) ) | 
						
							| 6 | 4 5 | sylibr |  |-  ( x : A --> B -> x e. ~P ( A X. B ) ) | 
						
							| 7 | 6 | anim1i |  |-  ( ( x : A --> B /\ ph ) -> ( x e. ~P ( A X. B ) /\ ph ) ) | 
						
							| 8 | 7 | ss2abi |  |-  { x | ( x : A --> B /\ ph ) } C_ { x | ( x e. ~P ( A X. B ) /\ ph ) } | 
						
							| 9 | 1 8 | eqsstri |  |-  F C_ { x | ( x e. ~P ( A X. B ) /\ ph ) } | 
						
							| 10 |  | ssab2 |  |-  { x | ( x e. ~P ( A X. B ) /\ ph ) } C_ ~P ( A X. B ) | 
						
							| 11 | 9 10 | sstri |  |-  F C_ ~P ( A X. B ) | 
						
							| 12 |  | ssexg |  |-  ( ( F C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> F e. _V ) | 
						
							| 13 | 11 12 | mpan |  |-  ( ~P ( A X. B ) e. _V -> F e. _V ) | 
						
							| 14 | 2 3 13 | 3syl |  |-  ( ( A e. C /\ B e. D ) -> F e. _V ) |