Step |
Hyp |
Ref |
Expression |
1 |
|
c0ex |
|- 0 e. _V |
2 |
1
|
a1i |
|- ( T. -> 0 e. _V ) |
3 |
|
1ex |
|- 1 e. _V |
4 |
3
|
a1i |
|- ( T. -> 1 e. _V ) |
5 |
|
df-fac |
|- ! = ( { <. 0 , 1 >. } u. seq 1 ( x. , _I ) ) |
6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
7 |
|
dfn2 |
|- NN = ( NN0 \ { 0 } ) |
8 |
6 7
|
eqtr3i |
|- ( ZZ>= ` 1 ) = ( NN0 \ { 0 } ) |
9 |
8
|
reseq2i |
|- ( seq 1 ( x. , _I ) |` ( ZZ>= ` 1 ) ) = ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) |
10 |
|
1z |
|- 1 e. ZZ |
11 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( x. , _I ) Fn ( ZZ>= ` 1 ) ) |
12 |
|
fnresdm |
|- ( seq 1 ( x. , _I ) Fn ( ZZ>= ` 1 ) -> ( seq 1 ( x. , _I ) |` ( ZZ>= ` 1 ) ) = seq 1 ( x. , _I ) ) |
13 |
10 11 12
|
mp2b |
|- ( seq 1 ( x. , _I ) |` ( ZZ>= ` 1 ) ) = seq 1 ( x. , _I ) |
14 |
9 13
|
eqtr3i |
|- ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) = seq 1 ( x. , _I ) |
15 |
14
|
uneq2i |
|- ( { <. 0 , 1 >. } u. ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) ) = ( { <. 0 , 1 >. } u. seq 1 ( x. , _I ) ) |
16 |
5 15
|
eqtr4i |
|- ! = ( { <. 0 , 1 >. } u. ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) ) |
17 |
2 4 16
|
fvsnun1 |
|- ( T. -> ( ! ` 0 ) = 1 ) |
18 |
17
|
mptru |
|- ( ! ` 0 ) = 1 |