Metamath Proof Explorer


Theorem fac2

Description: The factorial of 2. (Contributed by NM, 17-Mar-2005)

Ref Expression
Assertion fac2
|- ( ! ` 2 ) = 2

Proof

Step Hyp Ref Expression
1 df-2
 |-  2 = ( 1 + 1 )
2 1 fveq2i
 |-  ( ! ` 2 ) = ( ! ` ( 1 + 1 ) )
3 1nn0
 |-  1 e. NN0
4 facp1
 |-  ( 1 e. NN0 -> ( ! ` ( 1 + 1 ) ) = ( ( ! ` 1 ) x. ( 1 + 1 ) ) )
5 3 4 ax-mp
 |-  ( ! ` ( 1 + 1 ) ) = ( ( ! ` 1 ) x. ( 1 + 1 ) )
6 fac1
 |-  ( ! ` 1 ) = 1
7 1p1e2
 |-  ( 1 + 1 ) = 2
8 6 7 oveq12i
 |-  ( ( ! ` 1 ) x. ( 1 + 1 ) ) = ( 1 x. 2 )
9 2cn
 |-  2 e. CC
10 9 mulid2i
 |-  ( 1 x. 2 ) = 2
11 8 10 eqtri
 |-  ( ( ! ` 1 ) x. ( 1 + 1 ) ) = 2
12 5 11 eqtri
 |-  ( ! ` ( 1 + 1 ) ) = 2
13 2 12 eqtri
 |-  ( ! ` 2 ) = 2