| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 2 |
1
|
fveq2i |
|- ( ! ` 3 ) = ( ! ` ( 2 + 1 ) ) |
| 3 |
|
2nn0 |
|- 2 e. NN0 |
| 4 |
|
facp1 |
|- ( 2 e. NN0 -> ( ! ` ( 2 + 1 ) ) = ( ( ! ` 2 ) x. ( 2 + 1 ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( ! ` ( 2 + 1 ) ) = ( ( ! ` 2 ) x. ( 2 + 1 ) ) |
| 6 |
|
fac2 |
|- ( ! ` 2 ) = 2 |
| 7 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 8 |
6 7
|
oveq12i |
|- ( ( ! ` 2 ) x. ( 2 + 1 ) ) = ( 2 x. 3 ) |
| 9 |
|
2cn |
|- 2 e. CC |
| 10 |
|
3cn |
|- 3 e. CC |
| 11 |
9 10
|
mulcomi |
|- ( 2 x. 3 ) = ( 3 x. 2 ) |
| 12 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 13 |
8 11 12
|
3eqtri |
|- ( ( ! ` 2 ) x. ( 2 + 1 ) ) = 6 |
| 14 |
2 5 13
|
3eqtri |
|- ( ! ` 3 ) = 6 |