Step |
Hyp |
Ref |
Expression |
1 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
2 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
3 |
1 2
|
eqtr4i |
|- ( 2 ^ 2 ) = ( 2 x. 2 ) |
4 |
3
|
oveq2i |
|- ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) = ( ( 2 ^ ( N + 1 ) ) / ( 2 x. 2 ) ) |
5 |
|
2cn |
|- 2 e. CC |
6 |
|
expp1 |
|- ( ( 2 e. CC /\ N e. NN0 ) -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
7 |
5 6
|
mpan |
|- ( N e. NN0 -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
8 |
7
|
oveq1d |
|- ( N e. NN0 -> ( ( 2 ^ ( N + 1 ) ) / ( 2 x. 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
9 |
4 8
|
eqtrid |
|- ( N e. NN0 -> ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
10 |
|
expcl |
|- ( ( 2 e. CC /\ N e. NN0 ) -> ( 2 ^ N ) e. CC ) |
11 |
5 10
|
mpan |
|- ( N e. NN0 -> ( 2 ^ N ) e. CC ) |
12 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
13 |
|
divmuldiv |
|- ( ( ( ( 2 ^ N ) e. CC /\ 2 e. CC ) /\ ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) ) -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
14 |
12 12 13
|
mpanr12 |
|- ( ( ( 2 ^ N ) e. CC /\ 2 e. CC ) -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
15 |
11 5 14
|
sylancl |
|- ( N e. NN0 -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
16 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
17 |
16
|
oveq2i |
|- ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) / 2 ) x. 1 ) |
18 |
11
|
halfcld |
|- ( N e. NN0 -> ( ( 2 ^ N ) / 2 ) e. CC ) |
19 |
18
|
mulid1d |
|- ( N e. NN0 -> ( ( ( 2 ^ N ) / 2 ) x. 1 ) = ( ( 2 ^ N ) / 2 ) ) |
20 |
17 19
|
eqtrid |
|- ( N e. NN0 -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( 2 ^ N ) / 2 ) ) |
21 |
9 15 20
|
3eqtr2rd |
|- ( N e. NN0 -> ( ( 2 ^ N ) / 2 ) = ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) ) |
22 |
|
2nn0 |
|- 2 e. NN0 |
23 |
|
faclbnd |
|- ( ( 2 e. NN0 /\ N e. NN0 ) -> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) |
24 |
22 23
|
mpan |
|- ( N e. NN0 -> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) |
25 |
|
2re |
|- 2 e. RR |
26 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
27 |
|
reexpcl |
|- ( ( 2 e. RR /\ ( N + 1 ) e. NN0 ) -> ( 2 ^ ( N + 1 ) ) e. RR ) |
28 |
25 26 27
|
sylancr |
|- ( N e. NN0 -> ( 2 ^ ( N + 1 ) ) e. RR ) |
29 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
30 |
29
|
nnred |
|- ( N e. NN0 -> ( ! ` N ) e. RR ) |
31 |
|
4re |
|- 4 e. RR |
32 |
1 31
|
eqeltri |
|- ( 2 ^ 2 ) e. RR |
33 |
|
4pos |
|- 0 < 4 |
34 |
33 1
|
breqtrri |
|- 0 < ( 2 ^ 2 ) |
35 |
32 34
|
pm3.2i |
|- ( ( 2 ^ 2 ) e. RR /\ 0 < ( 2 ^ 2 ) ) |
36 |
|
ledivmul |
|- ( ( ( 2 ^ ( N + 1 ) ) e. RR /\ ( ! ` N ) e. RR /\ ( ( 2 ^ 2 ) e. RR /\ 0 < ( 2 ^ 2 ) ) ) -> ( ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) <-> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) ) |
37 |
35 36
|
mp3an3 |
|- ( ( ( 2 ^ ( N + 1 ) ) e. RR /\ ( ! ` N ) e. RR ) -> ( ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) <-> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) ) |
38 |
28 30 37
|
syl2anc |
|- ( N e. NN0 -> ( ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) <-> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) ) |
39 |
24 38
|
mpbird |
|- ( N e. NN0 -> ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) ) |
40 |
21 39
|
eqbrtrd |
|- ( N e. NN0 -> ( ( 2 ^ N ) / 2 ) <_ ( ! ` N ) ) |