Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
faclbnd4lem4 |
|- ( ( N e. NN /\ K e. NN0 /\ M e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
3 |
2
|
3com13 |
|- ( ( M e. NN0 /\ K e. NN0 /\ N e. NN ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
4 |
3
|
3expa |
|- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N e. NN ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
5 |
|
faclbnd4lem3 |
|- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
6 |
4 5
|
jaodan |
|- ( ( ( M e. NN0 /\ K e. NN0 ) /\ ( N e. NN \/ N = 0 ) ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
7 |
1 6
|
sylan2b |
|- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
8 |
7
|
3impa |
|- ( ( M e. NN0 /\ K e. NN0 /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
9 |
8
|
3com13 |
|- ( ( N e. NN0 /\ K e. NN0 /\ M e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |