Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) |
2 |
|
0exp |
|- ( K e. NN -> ( 0 ^ K ) = 0 ) |
3 |
2
|
adantl |
|- ( ( M e. NN0 /\ K e. NN ) -> ( 0 ^ K ) = 0 ) |
4 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
5 |
|
2nn0 |
|- 2 e. NN0 |
6 |
|
nn0sqcl |
|- ( K e. NN0 -> ( K ^ 2 ) e. NN0 ) |
7 |
|
nn0expcl |
|- ( ( 2 e. NN0 /\ ( K ^ 2 ) e. NN0 ) -> ( 2 ^ ( K ^ 2 ) ) e. NN0 ) |
8 |
5 6 7
|
sylancr |
|- ( K e. NN0 -> ( 2 ^ ( K ^ 2 ) ) e. NN0 ) |
9 |
8
|
adantl |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( 2 ^ ( K ^ 2 ) ) e. NN0 ) |
10 |
|
nn0addcl |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( M + K ) e. NN0 ) |
11 |
|
nn0expcl |
|- ( ( M e. NN0 /\ ( M + K ) e. NN0 ) -> ( M ^ ( M + K ) ) e. NN0 ) |
12 |
10 11
|
syldan |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( M ^ ( M + K ) ) e. NN0 ) |
13 |
9 12
|
nn0mulcld |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. NN0 ) |
14 |
4 13
|
sylan2 |
|- ( ( M e. NN0 /\ K e. NN ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. NN0 ) |
15 |
14
|
nn0ge0d |
|- ( ( M e. NN0 /\ K e. NN ) -> 0 <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
16 |
3 15
|
eqbrtrd |
|- ( ( M e. NN0 /\ K e. NN ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
17 |
|
1nn |
|- 1 e. NN |
18 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
19 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
20 |
|
0nn0 |
|- 0 e. NN0 |
21 |
|
nn0addcl |
|- ( ( M e. NN0 /\ 0 e. NN0 ) -> ( M + 0 ) e. NN0 ) |
22 |
19 20 21
|
sylancl |
|- ( M e. NN -> ( M + 0 ) e. NN0 ) |
23 |
|
nnexpcl |
|- ( ( M e. NN /\ ( M + 0 ) e. NN0 ) -> ( M ^ ( M + 0 ) ) e. NN ) |
24 |
22 23
|
mpdan |
|- ( M e. NN -> ( M ^ ( M + 0 ) ) e. NN ) |
25 |
|
id |
|- ( M = 0 -> M = 0 ) |
26 |
|
oveq1 |
|- ( M = 0 -> ( M + 0 ) = ( 0 + 0 ) ) |
27 |
|
00id |
|- ( 0 + 0 ) = 0 |
28 |
26 27
|
eqtrdi |
|- ( M = 0 -> ( M + 0 ) = 0 ) |
29 |
25 28
|
oveq12d |
|- ( M = 0 -> ( M ^ ( M + 0 ) ) = ( 0 ^ 0 ) ) |
30 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
31 |
29 30
|
eqtrdi |
|- ( M = 0 -> ( M ^ ( M + 0 ) ) = 1 ) |
32 |
31 17
|
eqeltrdi |
|- ( M = 0 -> ( M ^ ( M + 0 ) ) e. NN ) |
33 |
24 32
|
jaoi |
|- ( ( M e. NN \/ M = 0 ) -> ( M ^ ( M + 0 ) ) e. NN ) |
34 |
18 33
|
sylbi |
|- ( M e. NN0 -> ( M ^ ( M + 0 ) ) e. NN ) |
35 |
|
nnmulcl |
|- ( ( 1 e. NN /\ ( M ^ ( M + 0 ) ) e. NN ) -> ( 1 x. ( M ^ ( M + 0 ) ) ) e. NN ) |
36 |
17 34 35
|
sylancr |
|- ( M e. NN0 -> ( 1 x. ( M ^ ( M + 0 ) ) ) e. NN ) |
37 |
36
|
nnge1d |
|- ( M e. NN0 -> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) |
38 |
37
|
adantr |
|- ( ( M e. NN0 /\ K = 0 ) -> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) |
39 |
|
oveq2 |
|- ( K = 0 -> ( 0 ^ K ) = ( 0 ^ 0 ) ) |
40 |
39 30
|
eqtrdi |
|- ( K = 0 -> ( 0 ^ K ) = 1 ) |
41 |
|
sq0i |
|- ( K = 0 -> ( K ^ 2 ) = 0 ) |
42 |
41
|
oveq2d |
|- ( K = 0 -> ( 2 ^ ( K ^ 2 ) ) = ( 2 ^ 0 ) ) |
43 |
|
2cn |
|- 2 e. CC |
44 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
45 |
43 44
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
46 |
42 45
|
eqtrdi |
|- ( K = 0 -> ( 2 ^ ( K ^ 2 ) ) = 1 ) |
47 |
|
oveq2 |
|- ( K = 0 -> ( M + K ) = ( M + 0 ) ) |
48 |
47
|
oveq2d |
|- ( K = 0 -> ( M ^ ( M + K ) ) = ( M ^ ( M + 0 ) ) ) |
49 |
46 48
|
oveq12d |
|- ( K = 0 -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) = ( 1 x. ( M ^ ( M + 0 ) ) ) ) |
50 |
40 49
|
breq12d |
|- ( K = 0 -> ( ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) <-> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) ) |
51 |
50
|
adantl |
|- ( ( M e. NN0 /\ K = 0 ) -> ( ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) <-> 1 <_ ( 1 x. ( M ^ ( M + 0 ) ) ) ) ) |
52 |
38 51
|
mpbird |
|- ( ( M e. NN0 /\ K = 0 ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
53 |
16 52
|
jaodan |
|- ( ( M e. NN0 /\ ( K e. NN \/ K = 0 ) ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
54 |
1 53
|
sylan2b |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( 0 ^ K ) <_ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
55 |
|
nn0cn |
|- ( M e. NN0 -> M e. CC ) |
56 |
55
|
exp0d |
|- ( M e. NN0 -> ( M ^ 0 ) = 1 ) |
57 |
56
|
oveq2d |
|- ( M e. NN0 -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) = ( ( 0 ^ K ) x. 1 ) ) |
58 |
|
nn0expcl |
|- ( ( 0 e. NN0 /\ K e. NN0 ) -> ( 0 ^ K ) e. NN0 ) |
59 |
20 58
|
mpan |
|- ( K e. NN0 -> ( 0 ^ K ) e. NN0 ) |
60 |
59
|
nn0cnd |
|- ( K e. NN0 -> ( 0 ^ K ) e. CC ) |
61 |
60
|
mulid1d |
|- ( K e. NN0 -> ( ( 0 ^ K ) x. 1 ) = ( 0 ^ K ) ) |
62 |
57 61
|
sylan9eq |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) = ( 0 ^ K ) ) |
63 |
13
|
nn0cnd |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. CC ) |
64 |
63
|
mulid1d |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) = ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) |
65 |
54 62 64
|
3brtr4d |
|- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) |
66 |
65
|
adantr |
|- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) |
67 |
|
oveq1 |
|- ( N = 0 -> ( N ^ K ) = ( 0 ^ K ) ) |
68 |
|
oveq2 |
|- ( N = 0 -> ( M ^ N ) = ( M ^ 0 ) ) |
69 |
67 68
|
oveq12d |
|- ( N = 0 -> ( ( N ^ K ) x. ( M ^ N ) ) = ( ( 0 ^ K ) x. ( M ^ 0 ) ) ) |
70 |
|
fveq2 |
|- ( N = 0 -> ( ! ` N ) = ( ! ` 0 ) ) |
71 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
72 |
70 71
|
eqtrdi |
|- ( N = 0 -> ( ! ` N ) = 1 ) |
73 |
72
|
oveq2d |
|- ( N = 0 -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) = ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) |
74 |
69 73
|
breq12d |
|- ( N = 0 -> ( ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) <-> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) ) |
75 |
74
|
adantl |
|- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) <-> ( ( 0 ^ K ) x. ( M ^ 0 ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. 1 ) ) ) |
76 |
66 75
|
mpbird |
|- ( ( ( M e. NN0 /\ K e. NN0 ) /\ N = 0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |