Metamath Proof Explorer


Theorem facmapnn

Description: The factorial function restricted to positive integers is a mapping from the positive integers to the positive integers. (Contributed by AV, 8-Aug-2020)

Ref Expression
Assertion facmapnn
|- ( n e. NN |-> ( ! ` n ) ) e. ( NN ^m NN )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( n e. NN |-> ( ! ` n ) ) = ( n e. NN |-> ( ! ` n ) )
2 nnnn0
 |-  ( n e. NN -> n e. NN0 )
3 2 faccld
 |-  ( n e. NN -> ( ! ` n ) e. NN )
4 1 3 fmpti
 |-  ( n e. NN |-> ( ! ` n ) ) : NN --> NN
5 nnex
 |-  NN e. _V
6 5 5 elmap
 |-  ( ( n e. NN |-> ( ! ` n ) ) e. ( NN ^m NN ) <-> ( n e. NN |-> ( ! ` n ) ) : NN --> NN )
7 4 6 mpbir
 |-  ( n e. NN |-> ( ! ` n ) ) e. ( NN ^m NN )