| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnnnn0 |  |-  ( N e. NN <-> ( N e. CC /\ ( N - 1 ) e. NN0 ) ) | 
						
							| 2 |  | facp1 |  |-  ( ( N - 1 ) e. NN0 -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) ) | 
						
							| 4 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 5 | 4 | fveq2d |  |-  ( N e. CC -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ! ` N ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ! ` N ) ) | 
						
							| 7 | 4 | oveq2d |  |-  ( N e. CC -> ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. N ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. N ) ) | 
						
							| 9 | 3 6 8 | 3eqtr3d |  |-  ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) | 
						
							| 10 | 1 9 | sylbi |  |-  ( N e. NN -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |