Step |
Hyp |
Ref |
Expression |
1 |
|
elnnnn0 |
|- ( N e. NN <-> ( N e. CC /\ ( N - 1 ) e. NN0 ) ) |
2 |
|
facp1 |
|- ( ( N - 1 ) e. NN0 -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) ) |
3 |
2
|
adantl |
|- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) ) |
4 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
5 |
4
|
fveq2d |
|- ( N e. CC -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ! ` N ) ) |
6 |
5
|
adantr |
|- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` ( ( N - 1 ) + 1 ) ) = ( ! ` N ) ) |
7 |
4
|
oveq2d |
|- ( N e. CC -> ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
8 |
7
|
adantr |
|- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ( ! ` ( N - 1 ) ) x. ( ( N - 1 ) + 1 ) ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
9 |
3 6 8
|
3eqtr3d |
|- ( ( N e. CC /\ ( N - 1 ) e. NN0 ) -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
10 |
1 9
|
sylbi |
|- ( N e. NN -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |