Step |
Hyp |
Ref |
Expression |
1 |
|
facth.1 |
|- G = ( Xp oF - ( CC X. { A } ) ) |
2 |
|
eqid |
|- ( F oF - ( G oF x. ( F quot G ) ) ) = ( F oF - ( G oF x. ( F quot G ) ) ) |
3 |
1 2
|
plyrem |
|- ( ( F e. ( Poly ` S ) /\ A e. CC ) -> ( F oF - ( G oF x. ( F quot G ) ) ) = ( CC X. { ( F ` A ) } ) ) |
4 |
3
|
3adant3 |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( F oF - ( G oF x. ( F quot G ) ) ) = ( CC X. { ( F ` A ) } ) ) |
5 |
|
simp3 |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( F ` A ) = 0 ) |
6 |
5
|
sneqd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> { ( F ` A ) } = { 0 } ) |
7 |
6
|
xpeq2d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( CC X. { ( F ` A ) } ) = ( CC X. { 0 } ) ) |
8 |
4 7
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( F oF - ( G oF x. ( F quot G ) ) ) = ( CC X. { 0 } ) ) |
9 |
|
cnex |
|- CC e. _V |
10 |
9
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> CC e. _V ) |
11 |
|
simp1 |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> F e. ( Poly ` S ) ) |
12 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
13 |
11 12
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> F : CC --> CC ) |
14 |
1
|
plyremlem |
|- ( A e. CC -> ( G e. ( Poly ` CC ) /\ ( deg ` G ) = 1 /\ ( `' G " { 0 } ) = { A } ) ) |
15 |
14
|
3ad2ant2 |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( G e. ( Poly ` CC ) /\ ( deg ` G ) = 1 /\ ( `' G " { 0 } ) = { A } ) ) |
16 |
15
|
simp1d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> G e. ( Poly ` CC ) ) |
17 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
18 |
17 11
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> F e. ( Poly ` CC ) ) |
19 |
15
|
simp2d |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( deg ` G ) = 1 ) |
20 |
|
ax-1ne0 |
|- 1 =/= 0 |
21 |
20
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> 1 =/= 0 ) |
22 |
19 21
|
eqnetrd |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( deg ` G ) =/= 0 ) |
23 |
|
fveq2 |
|- ( G = 0p -> ( deg ` G ) = ( deg ` 0p ) ) |
24 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
25 |
23 24
|
eqtrdi |
|- ( G = 0p -> ( deg ` G ) = 0 ) |
26 |
25
|
necon3i |
|- ( ( deg ` G ) =/= 0 -> G =/= 0p ) |
27 |
22 26
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> G =/= 0p ) |
28 |
|
quotcl2 |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( F quot G ) e. ( Poly ` CC ) ) |
29 |
18 16 27 28
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( F quot G ) e. ( Poly ` CC ) ) |
30 |
|
plymulcl |
|- ( ( G e. ( Poly ` CC ) /\ ( F quot G ) e. ( Poly ` CC ) ) -> ( G oF x. ( F quot G ) ) e. ( Poly ` CC ) ) |
31 |
16 29 30
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( G oF x. ( F quot G ) ) e. ( Poly ` CC ) ) |
32 |
|
plyf |
|- ( ( G oF x. ( F quot G ) ) e. ( Poly ` CC ) -> ( G oF x. ( F quot G ) ) : CC --> CC ) |
33 |
31 32
|
syl |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( G oF x. ( F quot G ) ) : CC --> CC ) |
34 |
|
ofsubeq0 |
|- ( ( CC e. _V /\ F : CC --> CC /\ ( G oF x. ( F quot G ) ) : CC --> CC ) -> ( ( F oF - ( G oF x. ( F quot G ) ) ) = ( CC X. { 0 } ) <-> F = ( G oF x. ( F quot G ) ) ) ) |
35 |
10 13 33 34
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> ( ( F oF - ( G oF x. ( F quot G ) ) ) = ( CC X. { 0 } ) <-> F = ( G oF x. ( F quot G ) ) ) ) |
36 |
8 35
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ A e. CC /\ ( F ` A ) = 0 ) -> F = ( G oF x. ( F quot G ) ) ) |