Step |
Hyp |
Ref |
Expression |
1 |
|
ply1rem.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1rem.b |
|- B = ( Base ` P ) |
3 |
|
ply1rem.k |
|- K = ( Base ` R ) |
4 |
|
ply1rem.x |
|- X = ( var1 ` R ) |
5 |
|
ply1rem.m |
|- .- = ( -g ` P ) |
6 |
|
ply1rem.a |
|- A = ( algSc ` P ) |
7 |
|
ply1rem.g |
|- G = ( X .- ( A ` N ) ) |
8 |
|
ply1rem.o |
|- O = ( eval1 ` R ) |
9 |
|
ply1rem.1 |
|- ( ph -> R e. NzRing ) |
10 |
|
ply1rem.2 |
|- ( ph -> R e. CRing ) |
11 |
|
ply1rem.3 |
|- ( ph -> N e. K ) |
12 |
|
ply1rem.4 |
|- ( ph -> F e. B ) |
13 |
|
facth1.z |
|- .0. = ( 0g ` R ) |
14 |
|
facth1.d |
|- .|| = ( ||r ` P ) |
15 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
16 |
9 15
|
syl |
|- ( ph -> R e. Ring ) |
17 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
18 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 17 18 13
|
ply1remlem |
|- ( ph -> ( G e. ( Monic1p ` R ) /\ ( ( deg1 ` R ) ` G ) = 1 /\ ( `' ( O ` G ) " { .0. } ) = { N } ) ) |
20 |
19
|
simp1d |
|- ( ph -> G e. ( Monic1p ` R ) ) |
21 |
|
eqid |
|- ( Unic1p ` R ) = ( Unic1p ` R ) |
22 |
21 17
|
mon1puc1p |
|- ( ( R e. Ring /\ G e. ( Monic1p ` R ) ) -> G e. ( Unic1p ` R ) ) |
23 |
16 20 22
|
syl2anc |
|- ( ph -> G e. ( Unic1p ` R ) ) |
24 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
25 |
|
eqid |
|- ( rem1p ` R ) = ( rem1p ` R ) |
26 |
1 14 2 21 24 25
|
dvdsr1p |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( G .|| F <-> ( F ( rem1p ` R ) G ) = ( 0g ` P ) ) ) |
27 |
16 12 23 26
|
syl3anc |
|- ( ph -> ( G .|| F <-> ( F ( rem1p ` R ) G ) = ( 0g ` P ) ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 25
|
ply1rem |
|- ( ph -> ( F ( rem1p ` R ) G ) = ( A ` ( ( O ` F ) ` N ) ) ) |
29 |
1 6 13 24
|
ply1scl0 |
|- ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) |
30 |
16 29
|
syl |
|- ( ph -> ( A ` .0. ) = ( 0g ` P ) ) |
31 |
30
|
eqcomd |
|- ( ph -> ( 0g ` P ) = ( A ` .0. ) ) |
32 |
28 31
|
eqeq12d |
|- ( ph -> ( ( F ( rem1p ` R ) G ) = ( 0g ` P ) <-> ( A ` ( ( O ` F ) ` N ) ) = ( A ` .0. ) ) ) |
33 |
1 6 3 2
|
ply1sclf1 |
|- ( R e. Ring -> A : K -1-1-> B ) |
34 |
16 33
|
syl |
|- ( ph -> A : K -1-1-> B ) |
35 |
8 1 3 2 10 11 12
|
fveval1fvcl |
|- ( ph -> ( ( O ` F ) ` N ) e. K ) |
36 |
3 13
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
37 |
16 36
|
syl |
|- ( ph -> .0. e. K ) |
38 |
|
f1fveq |
|- ( ( A : K -1-1-> B /\ ( ( ( O ` F ) ` N ) e. K /\ .0. e. K ) ) -> ( ( A ` ( ( O ` F ) ` N ) ) = ( A ` .0. ) <-> ( ( O ` F ) ` N ) = .0. ) ) |
39 |
34 35 37 38
|
syl12anc |
|- ( ph -> ( ( A ` ( ( O ` F ) ` N ) ) = ( A ` .0. ) <-> ( ( O ` F ) ` N ) = .0. ) ) |
40 |
27 32 39
|
3bitrd |
|- ( ph -> ( G .|| F <-> ( ( O ` F ) ` N ) = .0. ) ) |