Metamath Proof Explorer


Theorem falantru

Description: A /\ identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion falantru
|- ( ( F. /\ T. ) <-> F. )

Proof

Step Hyp Ref Expression
1 fal
 |-  -. F.
2 1 intnanr
 |-  -. ( F. /\ T. )
3 2 bifal
 |-  ( ( F. /\ T. ) <-> F. )