Metamath Proof Explorer


Theorem falbitru

Description: A <-> identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 10-Jul-2020)

Ref Expression
Assertion falbitru
|- ( ( F. <-> T. ) <-> F. )

Proof

Step Hyp Ref Expression
1 tbtru
 |-  ( F. <-> ( F. <-> T. ) )
2 1 bicomi
 |-  ( ( F. <-> T. ) <-> F. )