| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. CC /\ N e. NN0 ) -> N e. CC ) | 
						
							| 3 |  | 1cnd |  |-  ( ( A e. CC /\ N e. NN0 ) -> 1 e. CC ) | 
						
							| 4 | 2 3 | pncand |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) | 
						
							| 6 | 5 | prodeq1d |  |-  ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) = prod_ k e. ( 0 ... N ) ( A - k ) ) | 
						
							| 7 |  | elnn0uz |  |-  ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) | 
						
							| 8 | 7 | biimpi |  |-  ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. CC /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 10 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 11 | 10 | nn0cnd |  |-  ( k e. ( 0 ... N ) -> k e. CC ) | 
						
							| 12 |  | subcl |  |-  ( ( A e. CC /\ k e. CC ) -> ( A - k ) e. CC ) | 
						
							| 13 | 11 12 | sylan2 |  |-  ( ( A e. CC /\ k e. ( 0 ... N ) ) -> ( A - k ) e. CC ) | 
						
							| 14 | 13 | adantlr |  |-  ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A - k ) e. CC ) | 
						
							| 15 |  | oveq2 |  |-  ( k = N -> ( A - k ) = ( A - N ) ) | 
						
							| 16 | 9 14 15 | fprodm1 |  |-  ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... N ) ( A - k ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) | 
						
							| 17 | 6 16 | eqtrd |  |-  ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) | 
						
							| 18 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 19 |  | fallfacval |  |-  ( ( A e. CC /\ ( N + 1 ) e. NN0 ) -> ( A FallFac ( N + 1 ) ) = prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) ) | 
						
							| 20 | 18 19 | sylan2 |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac ( N + 1 ) ) = prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) ) | 
						
							| 21 |  | fallfacval |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( ( A FallFac N ) x. ( A - N ) ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) | 
						
							| 23 | 17 20 22 | 3eqtr4d |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac ( N + 1 ) ) = ( ( A FallFac N ) x. ( A - N ) ) ) |