Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
2 |
1
|
adantl |
|- ( ( A e. CC /\ N e. NN0 ) -> N e. CC ) |
3 |
|
1cnd |
|- ( ( A e. CC /\ N e. NN0 ) -> 1 e. CC ) |
4 |
2 3
|
pncand |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( N + 1 ) - 1 ) = N ) |
5 |
4
|
oveq2d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
6 |
5
|
prodeq1d |
|- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) = prod_ k e. ( 0 ... N ) ( A - k ) ) |
7 |
|
elnn0uz |
|- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
8 |
7
|
biimpi |
|- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
9 |
8
|
adantl |
|- ( ( A e. CC /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
10 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
11 |
10
|
nn0cnd |
|- ( k e. ( 0 ... N ) -> k e. CC ) |
12 |
|
subcl |
|- ( ( A e. CC /\ k e. CC ) -> ( A - k ) e. CC ) |
13 |
11 12
|
sylan2 |
|- ( ( A e. CC /\ k e. ( 0 ... N ) ) -> ( A - k ) e. CC ) |
14 |
13
|
adantlr |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A - k ) e. CC ) |
15 |
|
oveq2 |
|- ( k = N -> ( A - k ) = ( A - N ) ) |
16 |
9 14 15
|
fprodm1 |
|- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... N ) ( A - k ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) |
17 |
6 16
|
eqtrd |
|- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) |
18 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
19 |
|
fallfacval |
|- ( ( A e. CC /\ ( N + 1 ) e. NN0 ) -> ( A FallFac ( N + 1 ) ) = prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) ) |
20 |
18 19
|
sylan2 |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac ( N + 1 ) ) = prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) ) |
21 |
|
fallfacval |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
22 |
21
|
oveq1d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( A FallFac N ) x. ( A - N ) ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) |
23 |
17 20 22
|
3eqtr4d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac ( N + 1 ) ) = ( ( A FallFac N ) x. ( A - N ) ) ) |