Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = A -> ( x - k ) = ( A - k ) ) |
2 |
1
|
prodeq2sdv |
|- ( x = A -> prod_ k e. ( 0 ... ( n - 1 ) ) ( x - k ) = prod_ k e. ( 0 ... ( n - 1 ) ) ( A - k ) ) |
3 |
|
oveq1 |
|- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
4 |
3
|
oveq2d |
|- ( n = N -> ( 0 ... ( n - 1 ) ) = ( 0 ... ( N - 1 ) ) ) |
5 |
4
|
prodeq1d |
|- ( n = N -> prod_ k e. ( 0 ... ( n - 1 ) ) ( A - k ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
6 |
|
df-fallfac |
|- FallFac = ( x e. CC , n e. NN0 |-> prod_ k e. ( 0 ... ( n - 1 ) ) ( x - k ) ) |
7 |
|
prodex |
|- prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) e. _V |
8 |
2 5 6 7
|
ovmpo |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |