| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( x = A -> ( x - k ) = ( A - k ) ) | 
						
							| 2 | 1 | prodeq2sdv |  |-  ( x = A -> prod_ k e. ( 0 ... ( n - 1 ) ) ( x - k ) = prod_ k e. ( 0 ... ( n - 1 ) ) ( A - k ) ) | 
						
							| 3 |  | oveq1 |  |-  ( n = N -> ( n - 1 ) = ( N - 1 ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( n = N -> ( 0 ... ( n - 1 ) ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 5 | 4 | prodeq1d |  |-  ( n = N -> prod_ k e. ( 0 ... ( n - 1 ) ) ( A - k ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) | 
						
							| 6 |  | df-fallfac |  |-  FallFac = ( x e. CC , n e. NN0 |-> prod_ k e. ( 0 ... ( n - 1 ) ) ( x - k ) ) | 
						
							| 7 |  | prodex |  |-  prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) e. _V | 
						
							| 8 | 2 5 6 7 | ovmpo |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |