Metamath Proof Explorer


Theorem falnantru

Description: A -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion falnantru
|- ( ( F. -/\ T. ) <-> T. )

Proof

Step Hyp Ref Expression
1 nancom
 |-  ( ( F. -/\ T. ) <-> ( T. -/\ F. ) )
2 trunanfal
 |-  ( ( T. -/\ F. ) <-> T. )
3 1 2 bitri
 |-  ( ( F. -/\ T. ) <-> T. )