Metamath Proof Explorer


Theorem falortru

Description: A \/ identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion falortru
|- ( ( F. \/ T. ) <-> T. )

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 1 olci
 |-  ( F. \/ T. )
3 2 bitru
 |-  ( ( F. \/ T. ) <-> T. )