Metamath Proof Explorer


Theorem falxorfal

Description: A \/_ identity. (Contributed by David A. Wheeler, 9-May-2015)

Ref Expression
Assertion falxorfal
|- ( ( F. \/_ F. ) <-> F. )

Proof

Step Hyp Ref Expression
1 df-xor
 |-  ( ( F. \/_ F. ) <-> -. ( F. <-> F. ) )
2 falbifal
 |-  ( ( F. <-> F. ) <-> T. )
3 1 2 xchbinx
 |-  ( ( F. \/_ F. ) <-> -. T. )
4 nottru
 |-  ( -. T. <-> F. )
5 3 4 bitri
 |-  ( ( F. \/_ F. ) <-> F. )