| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fbasrn.c | 
							 |-  C = ran ( x e. B |-> ( F " x ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> Y e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> F : X --> Y )  | 
						
						
							| 4 | 
							
								
							 | 
							fimass | 
							 |-  ( F : X --> Y -> ( F " x ) C_ Y )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> ( F " x ) C_ Y )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							sselpwd | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> ( F " x ) e. ~P Y )  | 
						
						
							| 7 | 
							
								6
							 | 
							fmpttd | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B |-> ( F " x ) ) : B --> ~P Y )  | 
						
						
							| 8 | 
							
								7
							 | 
							frnd | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ran ( x e. B |-> ( F " x ) ) C_ ~P Y )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							eqsstrid | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C C_ ~P Y )  | 
						
						
							| 10 | 
							
								1
							 | 
							a1i | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C = ran ( x e. B |-> ( F " x ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ffun | 
							 |-  ( F : X --> Y -> Fun F )  | 
						
						
							| 12 | 
							
								11
							 | 
							3ad2ant2 | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> Fun F )  | 
						
						
							| 13 | 
							
								
							 | 
							funimaexg | 
							 |-  ( ( Fun F /\ x e. B ) -> ( F " x ) e. _V )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							 |-  ( Fun F -> A. x e. B ( F " x ) e. _V )  | 
						
						
							| 15 | 
							
								
							 | 
							dmmptg | 
							 |-  ( A. x e. B ( F " x ) e. _V -> dom ( x e. B |-> ( F " x ) ) = B )  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							3syl | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom ( x e. B |-> ( F " x ) ) = B )  | 
						
						
							| 17 | 
							
								
							 | 
							fbasne0 | 
							 |-  ( B e. ( fBas ` X ) -> B =/= (/) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant1 | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> B =/= (/) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							eqnetrd | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom ( x e. B |-> ( F " x ) ) =/= (/) )  | 
						
						
							| 20 | 
							
								
							 | 
							dm0rn0 | 
							 |-  ( dom ( x e. B |-> ( F " x ) ) = (/) <-> ran ( x e. B |-> ( F " x ) ) = (/) )  | 
						
						
							| 21 | 
							
								20
							 | 
							necon3bii | 
							 |-  ( dom ( x e. B |-> ( F " x ) ) =/= (/) <-> ran ( x e. B |-> ( F " x ) ) =/= (/) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sylib | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ran ( x e. B |-> ( F " x ) ) =/= (/) )  | 
						
						
							| 23 | 
							
								10 22
							 | 
							eqnetrd | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C =/= (/) )  | 
						
						
							| 24 | 
							
								
							 | 
							fbelss | 
							 |-  ( ( B e. ( fBas ` X ) /\ x e. B ) -> x C_ X )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							 |-  ( B e. ( fBas ` X ) -> ( x e. B -> x C_ X ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							3ad2ant1 | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> x C_ X ) )  | 
						
						
							| 27 | 
							
								
							 | 
							0nelfb | 
							 |-  ( B e. ( fBas ` X ) -> -. (/) e. B )  | 
						
						
							| 28 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = (/) -> ( x e. B <-> (/) e. B ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							notbid | 
							 |-  ( x = (/) -> ( -. x e. B <-> -. (/) e. B ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							syl5ibrcom | 
							 |-  ( B e. ( fBas ` X ) -> ( x = (/) -> -. x e. B ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							con2d | 
							 |-  ( B e. ( fBas ` X ) -> ( x e. B -> -. x = (/) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3ad2ant1 | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> -. x = (/) ) )  | 
						
						
							| 33 | 
							
								26 32
							 | 
							jcad | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> ( x C_ X /\ -. x = (/) ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							fdm | 
							 |-  ( F : X --> Y -> dom F = X )  | 
						
						
							| 35 | 
							
								34
							 | 
							3ad2ant2 | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom F = X )  | 
						
						
							| 36 | 
							
								35
							 | 
							sseq2d | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x C_ dom F <-> x C_ X ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpar | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> x C_ dom F )  | 
						
						
							| 38 | 
							
								
							 | 
							sseqin2 | 
							 |-  ( x C_ dom F <-> ( dom F i^i x ) = x )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							sylib | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( dom F i^i x ) = x )  | 
						
						
							| 40 | 
							
								39
							 | 
							eqeq1d | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( ( dom F i^i x ) = (/) <-> x = (/) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							biimpd | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( ( dom F i^i x ) = (/) -> x = (/) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							con3d | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( -. x = (/) -> -. ( dom F i^i x ) = (/) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							expimpd | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( x C_ X /\ -. x = (/) ) -> -. ( dom F i^i x ) = (/) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqcom | 
							 |-  ( (/) = ( F " x ) <-> ( F " x ) = (/) )  | 
						
						
							| 45 | 
							
								
							 | 
							imadisj | 
							 |-  ( ( F " x ) = (/) <-> ( dom F i^i x ) = (/) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							bitri | 
							 |-  ( (/) = ( F " x ) <-> ( dom F i^i x ) = (/) )  | 
						
						
							| 47 | 
							
								46
							 | 
							notbii | 
							 |-  ( -. (/) = ( F " x ) <-> -. ( dom F i^i x ) = (/) )  | 
						
						
							| 48 | 
							
								43 47
							 | 
							imbitrrdi | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( x C_ X /\ -. x = (/) ) -> -. (/) = ( F " x ) ) )  | 
						
						
							| 49 | 
							
								33 48
							 | 
							syld | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> -. (/) = ( F " x ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							ralrimiv | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> A. x e. B -. (/) = ( F " x ) )  | 
						
						
							| 51 | 
							
								1
							 | 
							eleq2i | 
							 |-  ( (/) e. C <-> (/) e. ran ( x e. B |-> ( F " x ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 53 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. B |-> ( F " x ) ) = ( x e. B |-> ( F " x ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							elrnmpt | 
							 |-  ( (/) e. _V -> ( (/) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B (/) = ( F " x ) ) )  | 
						
						
							| 55 | 
							
								52 54
							 | 
							ax-mp | 
							 |-  ( (/) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B (/) = ( F " x ) )  | 
						
						
							| 56 | 
							
								51 55
							 | 
							bitri | 
							 |-  ( (/) e. C <-> E. x e. B (/) = ( F " x ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							notbii | 
							 |-  ( -. (/) e. C <-> -. E. x e. B (/) = ( F " x ) )  | 
						
						
							| 58 | 
							
								
							 | 
							df-nel | 
							 |-  ( (/) e/ C <-> -. (/) e. C )  | 
						
						
							| 59 | 
							
								
							 | 
							ralnex | 
							 |-  ( A. x e. B -. (/) = ( F " x ) <-> -. E. x e. B (/) = ( F " x ) )  | 
						
						
							| 60 | 
							
								57 58 59
							 | 
							3bitr4i | 
							 |-  ( (/) e/ C <-> A. x e. B -. (/) = ( F " x ) )  | 
						
						
							| 61 | 
							
								50 60
							 | 
							sylibr | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> (/) e/ C )  | 
						
						
							| 62 | 
							
								1
							 | 
							eleq2i | 
							 |-  ( r e. C <-> r e. ran ( x e. B |-> ( F " x ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							imaeq2 | 
							 |-  ( x = u -> ( F " x ) = ( F " u ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							cbvmptv | 
							 |-  ( x e. B |-> ( F " x ) ) = ( u e. B |-> ( F " u ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							elrnmpt | 
							 |-  ( r e. _V -> ( r e. ran ( x e. B |-> ( F " x ) ) <-> E. u e. B r = ( F " u ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							elv | 
							 |-  ( r e. ran ( x e. B |-> ( F " x ) ) <-> E. u e. B r = ( F " u ) )  | 
						
						
							| 67 | 
							
								62 66
							 | 
							bitri | 
							 |-  ( r e. C <-> E. u e. B r = ( F " u ) )  | 
						
						
							| 68 | 
							
								1
							 | 
							eleq2i | 
							 |-  ( s e. C <-> s e. ran ( x e. B |-> ( F " x ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							imaeq2 | 
							 |-  ( x = v -> ( F " x ) = ( F " v ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							cbvmptv | 
							 |-  ( x e. B |-> ( F " x ) ) = ( v e. B |-> ( F " v ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							elrnmpt | 
							 |-  ( s e. _V -> ( s e. ran ( x e. B |-> ( F " x ) ) <-> E. v e. B s = ( F " v ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							elv | 
							 |-  ( s e. ran ( x e. B |-> ( F " x ) ) <-> E. v e. B s = ( F " v ) )  | 
						
						
							| 73 | 
							
								68 72
							 | 
							bitri | 
							 |-  ( s e. C <-> E. v e. B s = ( F " v ) )  | 
						
						
							| 74 | 
							
								67 73
							 | 
							anbi12i | 
							 |-  ( ( r e. C /\ s e. C ) <-> ( E. u e. B r = ( F " u ) /\ E. v e. B s = ( F " v ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							reeanv | 
							 |-  ( E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) <-> ( E. u e. B r = ( F " u ) /\ E. v e. B s = ( F " v ) ) )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							bitr4i | 
							 |-  ( ( r e. C /\ s e. C ) <-> E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							fbasssin | 
							 |-  ( ( B e. ( fBas ` X ) /\ u e. B /\ v e. B ) -> E. w e. B w C_ ( u i^i v ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							3expb | 
							 |-  ( ( B e. ( fBas ` X ) /\ ( u e. B /\ v e. B ) ) -> E. w e. B w C_ ( u i^i v ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							3ad2antl1 | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( u e. B /\ v e. B ) ) -> E. w e. B w C_ ( u i^i v ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantrr | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) -> E. w e. B w C_ ( u i^i v ) )  | 
						
						
							| 81 | 
							
								
							 | 
							eqid | 
							 |-  ( F " w ) = ( F " w )  | 
						
						
							| 82 | 
							
								
							 | 
							imaeq2 | 
							 |-  ( x = w -> ( F " x ) = ( F " w ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							rspceeqv | 
							 |-  ( ( w e. B /\ ( F " w ) = ( F " w ) ) -> E. x e. B ( F " w ) = ( F " x ) )  | 
						
						
							| 84 | 
							
								81 83
							 | 
							mpan2 | 
							 |-  ( w e. B -> E. x e. B ( F " w ) = ( F " x ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							ad2antrl | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. x e. B ( F " w ) = ( F " x ) )  | 
						
						
							| 86 | 
							
								1
							 | 
							eleq2i | 
							 |-  ( ( F " w ) e. C <-> ( F " w ) e. ran ( x e. B |-> ( F " x ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							vex | 
							 |-  w e. _V  | 
						
						
							| 88 | 
							
								87
							 | 
							funimaex | 
							 |-  ( Fun F -> ( F " w ) e. _V )  | 
						
						
							| 89 | 
							
								53
							 | 
							elrnmpt | 
							 |-  ( ( F " w ) e. _V -> ( ( F " w ) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B ( F " w ) = ( F " x ) ) )  | 
						
						
							| 90 | 
							
								12 88 89
							 | 
							3syl | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( F " w ) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B ( F " w ) = ( F " x ) ) )  | 
						
						
							| 91 | 
							
								86 90
							 | 
							bitrid | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( F " w ) e. C <-> E. x e. B ( F " w ) = ( F " x ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							ad2antrr | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( ( F " w ) e. C <-> E. x e. B ( F " w ) = ( F " x ) ) )  | 
						
						
							| 93 | 
							
								85 92
							 | 
							mpbird | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) e. C )  | 
						
						
							| 94 | 
							
								
							 | 
							imass2 | 
							 |-  ( w C_ ( u i^i v ) -> ( F " w ) C_ ( F " ( u i^i v ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							ad2antll | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) C_ ( F " ( u i^i v ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							inss1 | 
							 |-  ( u i^i v ) C_ u  | 
						
						
							| 97 | 
							
								
							 | 
							imass2 | 
							 |-  ( ( u i^i v ) C_ u -> ( F " ( u i^i v ) ) C_ ( F " u ) )  | 
						
						
							| 98 | 
							
								96 97
							 | 
							ax-mp | 
							 |-  ( F " ( u i^i v ) ) C_ ( F " u )  | 
						
						
							| 99 | 
							
								
							 | 
							inss2 | 
							 |-  ( u i^i v ) C_ v  | 
						
						
							| 100 | 
							
								
							 | 
							imass2 | 
							 |-  ( ( u i^i v ) C_ v -> ( F " ( u i^i v ) ) C_ ( F " v ) )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							ax-mp | 
							 |-  ( F " ( u i^i v ) ) C_ ( F " v )  | 
						
						
							| 102 | 
							
								98 101
							 | 
							ssini | 
							 |-  ( F " ( u i^i v ) ) C_ ( ( F " u ) i^i ( F " v ) )  | 
						
						
							| 103 | 
							
								
							 | 
							ineq12 | 
							 |-  ( ( r = ( F " u ) /\ s = ( F " v ) ) -> ( r i^i s ) = ( ( F " u ) i^i ( F " v ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							ad2antlr | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( r i^i s ) = ( ( F " u ) i^i ( F " v ) ) )  | 
						
						
							| 105 | 
							
								102 104
							 | 
							sseqtrrid | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " ( u i^i v ) ) C_ ( r i^i s ) )  | 
						
						
							| 106 | 
							
								95 105
							 | 
							sstrd | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) C_ ( r i^i s ) )  | 
						
						
							| 107 | 
							
								
							 | 
							sseq1 | 
							 |-  ( z = ( F " w ) -> ( z C_ ( r i^i s ) <-> ( F " w ) C_ ( r i^i s ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							rspcev | 
							 |-  ( ( ( F " w ) e. C /\ ( F " w ) C_ ( r i^i s ) ) -> E. z e. C z C_ ( r i^i s ) )  | 
						
						
							| 109 | 
							
								93 106 108
							 | 
							syl2anc | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. z e. C z C_ ( r i^i s ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							adantlrl | 
							 |-  ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. z e. C z C_ ( r i^i s ) )  | 
						
						
							| 111 | 
							
								80 110
							 | 
							rexlimddv | 
							 |-  ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) -> E. z e. C z C_ ( r i^i s ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							exp32 | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( u e. B /\ v e. B ) -> ( ( r = ( F " u ) /\ s = ( F " v ) ) -> E. z e. C z C_ ( r i^i s ) ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							rexlimdvv | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) -> E. z e. C z C_ ( r i^i s ) ) )  | 
						
						
							| 114 | 
							
								76 113
							 | 
							biimtrid | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( r e. C /\ s e. C ) -> E. z e. C z C_ ( r i^i s ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							ralrimivv | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) )  | 
						
						
							| 116 | 
							
								23 61 115
							 | 
							3jca | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) )  | 
						
						
							| 117 | 
							
								
							 | 
							isfbas2 | 
							 |-  ( Y e. V -> ( C e. ( fBas ` Y ) <-> ( C C_ ~P Y /\ ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							3ad2ant3 | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( C e. ( fBas ` Y ) <-> ( C C_ ~P Y /\ ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) ) )  | 
						
						
							| 119 | 
							
								9 116 118
							 | 
							mpbir2and | 
							 |-  ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C e. ( fBas ` Y ) )  |