Step |
Hyp |
Ref |
Expression |
1 |
|
0nelfb |
|- ( F e. ( fBas ` B ) -> -. (/) e. F ) |
2 |
|
fveq2 |
|- ( B = (/) -> ( fBas ` B ) = ( fBas ` (/) ) ) |
3 |
2
|
eleq2d |
|- ( B = (/) -> ( F e. ( fBas ` B ) <-> F e. ( fBas ` (/) ) ) ) |
4 |
3
|
biimpd |
|- ( B = (/) -> ( F e. ( fBas ` B ) -> F e. ( fBas ` (/) ) ) ) |
5 |
|
fbasne0 |
|- ( F e. ( fBas ` (/) ) -> F =/= (/) ) |
6 |
|
n0 |
|- ( F =/= (/) <-> E. x x e. F ) |
7 |
5 6
|
sylib |
|- ( F e. ( fBas ` (/) ) -> E. x x e. F ) |
8 |
|
fbelss |
|- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x C_ (/) ) |
9 |
|
ss0 |
|- ( x C_ (/) -> x = (/) ) |
10 |
8 9
|
syl |
|- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x = (/) ) |
11 |
|
simpr |
|- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x e. F ) |
12 |
10 11
|
eqeltrrd |
|- ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> (/) e. F ) |
13 |
7 12
|
exlimddv |
|- ( F e. ( fBas ` (/) ) -> (/) e. F ) |
14 |
4 13
|
syl6com |
|- ( F e. ( fBas ` B ) -> ( B = (/) -> (/) e. F ) ) |
15 |
14
|
necon3bd |
|- ( F e. ( fBas ` B ) -> ( -. (/) e. F -> B =/= (/) ) ) |
16 |
1 15
|
mpd |
|- ( F e. ( fBas ` B ) -> B =/= (/) ) |