| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0nelfb | 
							 |-  ( F e. ( fBas ` B ) -> -. (/) e. F )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							 |-  ( B = (/) -> ( fBas ` B ) = ( fBas ` (/) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq2d | 
							 |-  ( B = (/) -> ( F e. ( fBas ` B ) <-> F e. ( fBas ` (/) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpd | 
							 |-  ( B = (/) -> ( F e. ( fBas ` B ) -> F e. ( fBas ` (/) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fbasne0 | 
							 |-  ( F e. ( fBas ` (/) ) -> F =/= (/) )  | 
						
						
							| 6 | 
							
								
							 | 
							n0 | 
							 |-  ( F =/= (/) <-> E. x x e. F )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylib | 
							 |-  ( F e. ( fBas ` (/) ) -> E. x x e. F )  | 
						
						
							| 8 | 
							
								
							 | 
							fbelss | 
							 |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x C_ (/) )  | 
						
						
							| 9 | 
							
								
							 | 
							ss0 | 
							 |-  ( x C_ (/) -> x = (/) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x = (/) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							 |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> x e. F )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeltrrd | 
							 |-  ( ( F e. ( fBas ` (/) ) /\ x e. F ) -> (/) e. F )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							exlimddv | 
							 |-  ( F e. ( fBas ` (/) ) -> (/) e. F )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							syl6com | 
							 |-  ( F e. ( fBas ` B ) -> ( B = (/) -> (/) e. F ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							necon3bd | 
							 |-  ( F e. ( fBas ` B ) -> ( -. (/) e. F -> B =/= (/) ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							mpd | 
							 |-  ( F e. ( fBas ` B ) -> B =/= (/) )  |