Description: An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fbelss | |- ( ( F e. ( fBas ` B ) /\ X e. F ) -> X C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbsspw | |- ( F e. ( fBas ` B ) -> F C_ ~P B ) |
|
2 | 1 | sselda | |- ( ( F e. ( fBas ` B ) /\ X e. F ) -> X e. ~P B ) |
3 | 2 | elpwid | |- ( ( F e. ( fBas ` B ) /\ X e. F ) -> X C_ B ) |