| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0nelfb | 
							 |-  ( F e. ( fBas ` X ) -> -. (/) e. F )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( F e. ( fBas ` X ) /\ A e. F ) -> -. (/) e. F )  | 
						
						
							| 3 | 
							
								
							 | 
							fbasssin | 
							 |-  ( ( F e. ( fBas ` X ) /\ A e. F /\ ( B \ A ) e. F ) -> E. x e. F x C_ ( A i^i ( B \ A ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							disjdif | 
							 |-  ( A i^i ( B \ A ) ) = (/)  | 
						
						
							| 5 | 
							
								4
							 | 
							sseq2i | 
							 |-  ( x C_ ( A i^i ( B \ A ) ) <-> x C_ (/) )  | 
						
						
							| 6 | 
							
								
							 | 
							ss0 | 
							 |-  ( x C_ (/) -> x = (/) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylbi | 
							 |-  ( x C_ ( A i^i ( B \ A ) ) -> x = (/) )  | 
						
						
							| 8 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = (/) -> ( x e. F <-> (/) e. F ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpac | 
							 |-  ( ( x e. F /\ x = (/) ) -> (/) e. F )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							sylan2 | 
							 |-  ( ( x e. F /\ x C_ ( A i^i ( B \ A ) ) ) -> (/) e. F )  | 
						
						
							| 11 | 
							
								10
							 | 
							rexlimiva | 
							 |-  ( E. x e. F x C_ ( A i^i ( B \ A ) ) -> (/) e. F )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							syl | 
							 |-  ( ( F e. ( fBas ` X ) /\ A e. F /\ ( B \ A ) e. F ) -> (/) e. F )  | 
						
						
							| 13 | 
							
								12
							 | 
							3expia | 
							 |-  ( ( F e. ( fBas ` X ) /\ A e. F ) -> ( ( B \ A ) e. F -> (/) e. F ) )  | 
						
						
							| 14 | 
							
								2 13
							 | 
							mtod | 
							 |-  ( ( F e. ( fBas ` X ) /\ A e. F ) -> -. ( B \ A ) e. F )  |