| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fbasne0 | 
							 |-  ( F e. ( fBas ` B ) -> F =/= (/) )  | 
						
						
							| 2 | 
							
								
							 | 
							n0 | 
							 |-  ( F =/= (/) <-> E. x x e. F )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylib | 
							 |-  ( F e. ( fBas ` B ) -> E. x x e. F )  | 
						
						
							| 4 | 
							
								
							 | 
							ssv | 
							 |-  x C_ _V  | 
						
						
							| 5 | 
							
								4
							 | 
							jctr | 
							 |-  ( x e. F -> ( x e. F /\ x C_ _V ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eximi | 
							 |-  ( E. x x e. F -> E. x ( x e. F /\ x C_ _V ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-rex | 
							 |-  ( E. x e. F x C_ _V <-> E. x ( x e. F /\ x C_ _V ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							 |-  ( E. x x e. F -> E. x e. F x C_ _V )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							syl | 
							 |-  ( F e. ( fBas ` B ) -> E. x e. F x C_ _V )  | 
						
						
							| 10 | 
							
								
							 | 
							inteq | 
							 |-  ( A = (/) -> |^| A = |^| (/) )  | 
						
						
							| 11 | 
							
								
							 | 
							int0 | 
							 |-  |^| (/) = _V  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtrdi | 
							 |-  ( A = (/) -> |^| A = _V )  | 
						
						
							| 13 | 
							
								12
							 | 
							sseq2d | 
							 |-  ( A = (/) -> ( x C_ |^| A <-> x C_ _V ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rexbidv | 
							 |-  ( A = (/) -> ( E. x e. F x C_ |^| A <-> E. x e. F x C_ _V ) )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							syl5ibrcom | 
							 |-  ( F e. ( fBas ` B ) -> ( A = (/) -> E. x e. F x C_ |^| A ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant1 | 
							 |-  ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) -> ( A = (/) -> E. x e. F x C_ |^| A ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> F e. ( fBas ` B ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> A C_ F )  | 
						
						
							| 19 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> A =/= (/) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> A e. Fin )  | 
						
						
							| 21 | 
							
								
							 | 
							elfir | 
							 |-  ( ( F e. ( fBas ` B ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. ( fi ` F ) )  | 
						
						
							| 22 | 
							
								17 18 19 20 21
							 | 
							syl13anc | 
							 |-  ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> |^| A e. ( fi ` F ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fbssfi | 
							 |-  ( ( F e. ( fBas ` B ) /\ |^| A e. ( fi ` F ) ) -> E. x e. F x C_ |^| A )  | 
						
						
							| 24 | 
							
								17 22 23
							 | 
							syl2anc | 
							 |-  ( ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) /\ A =/= (/) ) -> E. x e. F x C_ |^| A )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							 |-  ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) -> ( A =/= (/) -> E. x e. F x C_ |^| A ) )  | 
						
						
							| 26 | 
							
								16 25
							 | 
							pm2.61dne | 
							 |-  ( ( F e. ( fBas ` B ) /\ A C_ F /\ A e. Fin ) -> E. x e. F x C_ |^| A )  |