Description: Two ways to write the support of a function into NN0 . (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcdmnn0supp | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | |- 0 e. _V |
|
| 2 | fsuppeq | |- ( ( I e. V /\ 0 e. _V ) -> ( F : I --> NN0 -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( I e. V -> ( F : I --> NN0 -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) ) |
| 4 | 3 | imp | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) |
| 5 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
| 6 | 5 | imaeq2i | |- ( `' F " NN ) = ( `' F " ( NN0 \ { 0 } ) ) |
| 7 | 4 6 | eqtr4di | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |