Step |
Hyp |
Ref |
Expression |
1 |
|
fcfnei |
|- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fClusf L ) ` F ) <-> ( A e. X /\ A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) ) ) ) |
2 |
|
ineq1 |
|- ( n = N -> ( n i^i ( F " s ) ) = ( N i^i ( F " s ) ) ) |
3 |
2
|
neeq1d |
|- ( n = N -> ( ( n i^i ( F " s ) ) =/= (/) <-> ( N i^i ( F " s ) ) =/= (/) ) ) |
4 |
|
imaeq2 |
|- ( s = S -> ( F " s ) = ( F " S ) ) |
5 |
4
|
ineq2d |
|- ( s = S -> ( N i^i ( F " s ) ) = ( N i^i ( F " S ) ) ) |
6 |
5
|
neeq1d |
|- ( s = S -> ( ( N i^i ( F " s ) ) =/= (/) <-> ( N i^i ( F " S ) ) =/= (/) ) ) |
7 |
3 6
|
rspc2v |
|- ( ( N e. ( ( nei ` J ) ` { A } ) /\ S e. L ) -> ( A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) -> ( N i^i ( F " S ) ) =/= (/) ) ) |
8 |
7
|
ex |
|- ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) -> ( N i^i ( F " S ) ) =/= (/) ) ) ) |
9 |
8
|
com3r |
|- ( A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) -> ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( N i^i ( F " S ) ) =/= (/) ) ) ) |
10 |
9
|
adantl |
|- ( ( A e. X /\ A. n e. ( ( nei ` J ) ` { A } ) A. s e. L ( n i^i ( F " s ) ) =/= (/) ) -> ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( N i^i ( F " S ) ) =/= (/) ) ) ) |
11 |
1 10
|
syl6bi |
|- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( A e. ( ( J fClusf L ) ` F ) -> ( N e. ( ( nei ` J ) ` { A } ) -> ( S e. L -> ( N i^i ( F " S ) ) =/= (/) ) ) ) ) |
12 |
11
|
3imp2 |
|- ( ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ ( A e. ( ( J fClusf L ) ` F ) /\ N e. ( ( nei ` J ) ` { A } ) /\ S e. L ) ) -> ( N i^i ( F " S ) ) =/= (/) ) |