| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flimfnfcls.x |  |-  X = U. J | 
						
							| 2 |  | cmptop |  |-  ( J e. Comp -> J e. Top ) | 
						
							| 3 | 1 | fclsval |  |-  ( ( J e. Top /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = if ( X = X , |^|_ x e. F ( ( cls ` J ) ` x ) , (/) ) ) | 
						
							| 4 |  | eqid |  |-  X = X | 
						
							| 5 | 4 | iftruei |  |-  if ( X = X , |^|_ x e. F ( ( cls ` J ) ` x ) , (/) ) = |^|_ x e. F ( ( cls ` J ) ` x ) | 
						
							| 6 | 3 5 | eqtrdi |  |-  ( ( J e. Top /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = |^|_ x e. F ( ( cls ` J ) ` x ) ) | 
						
							| 7 | 2 6 | sylan |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = |^|_ x e. F ( ( cls ` J ) ` x ) ) | 
						
							| 8 |  | fvex |  |-  ( ( cls ` J ) ` x ) e. _V | 
						
							| 9 | 8 | dfiin3 |  |-  |^|_ x e. F ( ( cls ` J ) ` x ) = |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) | 
						
							| 10 | 7 9 | eqtrdi |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( J fClus F ) = |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) | 
						
							| 11 |  | simpl |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> J e. Comp ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> J e. Comp ) | 
						
							| 13 | 12 2 | syl |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> J e. Top ) | 
						
							| 14 |  | filelss |  |-  ( ( F e. ( Fil ` X ) /\ x e. F ) -> x C_ X ) | 
						
							| 15 | 14 | adantll |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> x C_ X ) | 
						
							| 16 | 1 | clscld |  |-  ( ( J e. Top /\ x C_ X ) -> ( ( cls ` J ) ` x ) e. ( Clsd ` J ) ) | 
						
							| 17 | 13 15 16 | syl2anc |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> ( ( cls ` J ) ` x ) e. ( Clsd ` J ) ) | 
						
							| 18 | 17 | fmpttd |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( x e. F |-> ( ( cls ` J ) ` x ) ) : F --> ( Clsd ` J ) ) | 
						
							| 19 | 18 | frnd |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ ( Clsd ` J ) ) | 
						
							| 20 |  | simpr |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> F e. ( Fil ` X ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> F e. ( Fil ` X ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> x e. F ) | 
						
							| 23 | 1 | clsss3 |  |-  ( ( J e. Top /\ x C_ X ) -> ( ( cls ` J ) ` x ) C_ X ) | 
						
							| 24 | 13 15 23 | syl2anc |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> ( ( cls ` J ) ` x ) C_ X ) | 
						
							| 25 | 1 | sscls |  |-  ( ( J e. Top /\ x C_ X ) -> x C_ ( ( cls ` J ) ` x ) ) | 
						
							| 26 | 13 15 25 | syl2anc |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> x C_ ( ( cls ` J ) ` x ) ) | 
						
							| 27 |  | filss |  |-  ( ( F e. ( Fil ` X ) /\ ( x e. F /\ ( ( cls ` J ) ` x ) C_ X /\ x C_ ( ( cls ` J ) ` x ) ) ) -> ( ( cls ` J ) ` x ) e. F ) | 
						
							| 28 | 21 22 24 26 27 | syl13anc |  |-  ( ( ( J e. Comp /\ F e. ( Fil ` X ) ) /\ x e. F ) -> ( ( cls ` J ) ` x ) e. F ) | 
						
							| 29 | 28 | fmpttd |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( x e. F |-> ( ( cls ` J ) ` x ) ) : F --> F ) | 
						
							| 30 | 29 | frnd |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ F ) | 
						
							| 31 |  | fiss |  |-  ( ( F e. ( Fil ` X ) /\ ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ F ) -> ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) C_ ( fi ` F ) ) | 
						
							| 32 | 20 30 31 | syl2anc |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) C_ ( fi ` F ) ) | 
						
							| 33 |  | filfi |  |-  ( F e. ( Fil ` X ) -> ( fi ` F ) = F ) | 
						
							| 34 | 20 33 | syl |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( fi ` F ) = F ) | 
						
							| 35 | 32 34 | sseqtrd |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) C_ F ) | 
						
							| 36 |  | 0nelfil |  |-  ( F e. ( Fil ` X ) -> -. (/) e. F ) | 
						
							| 37 | 20 36 | syl |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> -. (/) e. F ) | 
						
							| 38 | 35 37 | ssneldd |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> -. (/) e. ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) ) | 
						
							| 39 |  | cmpfii |  |-  ( ( J e. Comp /\ ran ( x e. F |-> ( ( cls ` J ) ` x ) ) C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` ran ( x e. F |-> ( ( cls ` J ) ` x ) ) ) ) -> |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) =/= (/) ) | 
						
							| 40 | 11 19 38 39 | syl3anc |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> |^| ran ( x e. F |-> ( ( cls ` J ) ` x ) ) =/= (/) ) | 
						
							| 41 | 10 40 | eqnetrd |  |-  ( ( J e. Comp /\ F e. ( Fil ` X ) ) -> ( J fClus F ) =/= (/) ) |