Metamath Proof Explorer


Theorem fclsfil

Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsval.x
|- X = U. J
Assertion fclsfil
|- ( A e. ( J fClus F ) -> F e. ( Fil ` X ) )

Proof

Step Hyp Ref Expression
1 fclsval.x
 |-  X = U. J
2 1 isfcls
 |-  ( A e. ( J fClus F ) <-> ( J e. Top /\ F e. ( Fil ` X ) /\ A. s e. F A e. ( ( cls ` J ) ` s ) ) )
3 2 simp2bi
 |-  ( A e. ( J fClus F ) -> F e. ( Fil ` X ) )