| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  U. J = U. J | 
						
							| 2 | 1 | isfcls |  |-  ( x e. ( J fClus F ) <-> ( J e. Top /\ F e. ( Fil ` U. J ) /\ A. s e. F x e. ( ( cls ` J ) ` s ) ) ) | 
						
							| 3 | 2 | simp3bi |  |-  ( x e. ( J fClus F ) -> A. s e. F x e. ( ( cls ` J ) ` s ) ) | 
						
							| 4 |  | fveq2 |  |-  ( s = S -> ( ( cls ` J ) ` s ) = ( ( cls ` J ) ` S ) ) | 
						
							| 5 | 4 | eleq2d |  |-  ( s = S -> ( x e. ( ( cls ` J ) ` s ) <-> x e. ( ( cls ` J ) ` S ) ) ) | 
						
							| 6 | 5 | rspcv |  |-  ( S e. F -> ( A. s e. F x e. ( ( cls ` J ) ` s ) -> x e. ( ( cls ` J ) ` S ) ) ) | 
						
							| 7 | 3 6 | syl5 |  |-  ( S e. F -> ( x e. ( J fClus F ) -> x e. ( ( cls ` J ) ` S ) ) ) | 
						
							| 8 | 7 | ssrdv |  |-  ( S e. F -> ( J fClus F ) C_ ( ( cls ` J ) ` S ) ) |