Metamath Proof Explorer


Theorem fcnre

Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fcnre.1
|- K = ( topGen ` ran (,) )
fcnre.3
|- T = U. J
sfcnre.5
|- C = ( J Cn K )
fcnre.6
|- ( ph -> F e. C )
Assertion fcnre
|- ( ph -> F : T --> RR )

Proof

Step Hyp Ref Expression
1 fcnre.1
 |-  K = ( topGen ` ran (,) )
2 fcnre.3
 |-  T = U. J
3 sfcnre.5
 |-  C = ( J Cn K )
4 fcnre.6
 |-  ( ph -> F e. C )
5 4 3 eleqtrdi
 |-  ( ph -> F e. ( J Cn K ) )
6 cntop1
 |-  ( F e. ( J Cn K ) -> J e. Top )
7 5 6 syl
 |-  ( ph -> J e. Top )
8 2 toptopon
 |-  ( J e. Top <-> J e. ( TopOn ` T ) )
9 7 8 sylib
 |-  ( ph -> J e. ( TopOn ` T ) )
10 retopon
 |-  ( topGen ` ran (,) ) e. ( TopOn ` RR )
11 1 10 eqeltri
 |-  K e. ( TopOn ` RR )
12 11 a1i
 |-  ( ph -> K e. ( TopOn ` RR ) )
13 cnf2
 |-  ( ( J e. ( TopOn ` T ) /\ K e. ( TopOn ` RR ) /\ F e. ( J Cn K ) ) -> F : T --> RR )
14 9 12 5 13 syl3anc
 |-  ( ph -> F : T --> RR )