Step |
Hyp |
Ref |
Expression |
1 |
|
df-rn |
|- ran A = dom `' A |
2 |
1
|
eleq2i |
|- ( Y e. ran A <-> Y e. dom `' A ) |
3 |
|
fgreu |
|- ( ( Fun `' A /\ Y e. dom `' A ) -> E! q e. `' A Y = ( 1st ` q ) ) |
4 |
3
|
adantll |
|- ( ( ( Rel A /\ Fun `' A ) /\ Y e. dom `' A ) -> E! q e. `' A Y = ( 1st ` q ) ) |
5 |
2 4
|
sylan2b |
|- ( ( ( Rel A /\ Fun `' A ) /\ Y e. ran A ) -> E! q e. `' A Y = ( 1st ` q ) ) |
6 |
|
cnvcnvss |
|- `' `' A C_ A |
7 |
|
cnvssrndm |
|- `' A C_ ( ran A X. dom A ) |
8 |
7
|
sseli |
|- ( q e. `' A -> q e. ( ran A X. dom A ) ) |
9 |
|
dfdm4 |
|- dom A = ran `' A |
10 |
1 9
|
xpeq12i |
|- ( ran A X. dom A ) = ( dom `' A X. ran `' A ) |
11 |
8 10
|
eleqtrdi |
|- ( q e. `' A -> q e. ( dom `' A X. ran `' A ) ) |
12 |
|
2nd1st |
|- ( q e. ( dom `' A X. ran `' A ) -> U. `' { q } = <. ( 2nd ` q ) , ( 1st ` q ) >. ) |
13 |
11 12
|
syl |
|- ( q e. `' A -> U. `' { q } = <. ( 2nd ` q ) , ( 1st ` q ) >. ) |
14 |
13
|
eqcomd |
|- ( q e. `' A -> <. ( 2nd ` q ) , ( 1st ` q ) >. = U. `' { q } ) |
15 |
|
relcnv |
|- Rel `' A |
16 |
|
cnvf1olem |
|- ( ( Rel `' A /\ ( q e. `' A /\ <. ( 2nd ` q ) , ( 1st ` q ) >. = U. `' { q } ) ) -> ( <. ( 2nd ` q ) , ( 1st ` q ) >. e. `' `' A /\ q = U. `' { <. ( 2nd ` q ) , ( 1st ` q ) >. } ) ) |
17 |
16
|
simpld |
|- ( ( Rel `' A /\ ( q e. `' A /\ <. ( 2nd ` q ) , ( 1st ` q ) >. = U. `' { q } ) ) -> <. ( 2nd ` q ) , ( 1st ` q ) >. e. `' `' A ) |
18 |
15 17
|
mpan |
|- ( ( q e. `' A /\ <. ( 2nd ` q ) , ( 1st ` q ) >. = U. `' { q } ) -> <. ( 2nd ` q ) , ( 1st ` q ) >. e. `' `' A ) |
19 |
14 18
|
mpdan |
|- ( q e. `' A -> <. ( 2nd ` q ) , ( 1st ` q ) >. e. `' `' A ) |
20 |
6 19
|
sselid |
|- ( q e. `' A -> <. ( 2nd ` q ) , ( 1st ` q ) >. e. A ) |
21 |
20
|
adantl |
|- ( ( ( Rel A /\ Fun `' A ) /\ q e. `' A ) -> <. ( 2nd ` q ) , ( 1st ` q ) >. e. A ) |
22 |
|
simpll |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> Rel A ) |
23 |
|
simpr |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> p e. A ) |
24 |
|
relssdmrn |
|- ( Rel A -> A C_ ( dom A X. ran A ) ) |
25 |
24
|
adantr |
|- ( ( Rel A /\ Fun `' A ) -> A C_ ( dom A X. ran A ) ) |
26 |
25
|
sselda |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> p e. ( dom A X. ran A ) ) |
27 |
|
2nd1st |
|- ( p e. ( dom A X. ran A ) -> U. `' { p } = <. ( 2nd ` p ) , ( 1st ` p ) >. ) |
28 |
26 27
|
syl |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> U. `' { p } = <. ( 2nd ` p ) , ( 1st ` p ) >. ) |
29 |
28
|
eqcomd |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> <. ( 2nd ` p ) , ( 1st ` p ) >. = U. `' { p } ) |
30 |
|
cnvf1olem |
|- ( ( Rel A /\ ( p e. A /\ <. ( 2nd ` p ) , ( 1st ` p ) >. = U. `' { p } ) ) -> ( <. ( 2nd ` p ) , ( 1st ` p ) >. e. `' A /\ p = U. `' { <. ( 2nd ` p ) , ( 1st ` p ) >. } ) ) |
31 |
30
|
simpld |
|- ( ( Rel A /\ ( p e. A /\ <. ( 2nd ` p ) , ( 1st ` p ) >. = U. `' { p } ) ) -> <. ( 2nd ` p ) , ( 1st ` p ) >. e. `' A ) |
32 |
22 23 29 31
|
syl12anc |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> <. ( 2nd ` p ) , ( 1st ` p ) >. e. `' A ) |
33 |
15
|
a1i |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> Rel `' A ) |
34 |
|
simplr |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> q e. `' A ) |
35 |
14
|
ad2antlr |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> <. ( 2nd ` q ) , ( 1st ` q ) >. = U. `' { q } ) |
36 |
16
|
simprd |
|- ( ( Rel `' A /\ ( q e. `' A /\ <. ( 2nd ` q ) , ( 1st ` q ) >. = U. `' { q } ) ) -> q = U. `' { <. ( 2nd ` q ) , ( 1st ` q ) >. } ) |
37 |
33 34 35 36
|
syl12anc |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> q = U. `' { <. ( 2nd ` q ) , ( 1st ` q ) >. } ) |
38 |
|
simpr |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) |
39 |
38
|
sneqd |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> { p } = { <. ( 2nd ` q ) , ( 1st ` q ) >. } ) |
40 |
39
|
cnveqd |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> `' { p } = `' { <. ( 2nd ` q ) , ( 1st ` q ) >. } ) |
41 |
40
|
unieqd |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> U. `' { p } = U. `' { <. ( 2nd ` q ) , ( 1st ` q ) >. } ) |
42 |
28
|
ad2antrr |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> U. `' { p } = <. ( 2nd ` p ) , ( 1st ` p ) >. ) |
43 |
37 41 42
|
3eqtr2d |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) |
44 |
30
|
simprd |
|- ( ( Rel A /\ ( p e. A /\ <. ( 2nd ` p ) , ( 1st ` p ) >. = U. `' { p } ) ) -> p = U. `' { <. ( 2nd ` p ) , ( 1st ` p ) >. } ) |
45 |
22 23 29 44
|
syl12anc |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> p = U. `' { <. ( 2nd ` p ) , ( 1st ` p ) >. } ) |
46 |
45
|
ad2antrr |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) -> p = U. `' { <. ( 2nd ` p ) , ( 1st ` p ) >. } ) |
47 |
|
simpr |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) -> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) |
48 |
47
|
sneqd |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) -> { q } = { <. ( 2nd ` p ) , ( 1st ` p ) >. } ) |
49 |
48
|
cnveqd |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) -> `' { q } = `' { <. ( 2nd ` p ) , ( 1st ` p ) >. } ) |
50 |
49
|
unieqd |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) -> U. `' { q } = U. `' { <. ( 2nd ` p ) , ( 1st ` p ) >. } ) |
51 |
13
|
ad2antlr |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) -> U. `' { q } = <. ( 2nd ` q ) , ( 1st ` q ) >. ) |
52 |
46 50 51
|
3eqtr2d |
|- ( ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) /\ q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) -> p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) |
53 |
43 52
|
impbida |
|- ( ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) /\ q e. `' A ) -> ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) ) |
54 |
53
|
ralrimiva |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> A. q e. `' A ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) ) |
55 |
|
eqeq2 |
|- ( r = <. ( 2nd ` p ) , ( 1st ` p ) >. -> ( q = r <-> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) ) |
56 |
55
|
bibi2d |
|- ( r = <. ( 2nd ` p ) , ( 1st ` p ) >. -> ( ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = r ) <-> ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) ) ) |
57 |
56
|
ralbidv |
|- ( r = <. ( 2nd ` p ) , ( 1st ` p ) >. -> ( A. q e. `' A ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = r ) <-> A. q e. `' A ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) ) ) |
58 |
57
|
rspcev |
|- ( ( <. ( 2nd ` p ) , ( 1st ` p ) >. e. `' A /\ A. q e. `' A ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = <. ( 2nd ` p ) , ( 1st ` p ) >. ) ) -> E. r e. `' A A. q e. `' A ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = r ) ) |
59 |
32 54 58
|
syl2anc |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> E. r e. `' A A. q e. `' A ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = r ) ) |
60 |
|
reu6 |
|- ( E! q e. `' A p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> E. r e. `' A A. q e. `' A ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. <-> q = r ) ) |
61 |
59 60
|
sylibr |
|- ( ( ( Rel A /\ Fun `' A ) /\ p e. A ) -> E! q e. `' A p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) |
62 |
|
fvex |
|- ( 2nd ` q ) e. _V |
63 |
|
fvex |
|- ( 1st ` q ) e. _V |
64 |
62 63
|
op2ndd |
|- ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. -> ( 2nd ` p ) = ( 1st ` q ) ) |
65 |
64
|
eqeq2d |
|- ( p = <. ( 2nd ` q ) , ( 1st ` q ) >. -> ( Y = ( 2nd ` p ) <-> Y = ( 1st ` q ) ) ) |
66 |
65
|
adantl |
|- ( ( ( Rel A /\ Fun `' A ) /\ p = <. ( 2nd ` q ) , ( 1st ` q ) >. ) -> ( Y = ( 2nd ` p ) <-> Y = ( 1st ` q ) ) ) |
67 |
21 61 66
|
reuxfr1d |
|- ( ( Rel A /\ Fun `' A ) -> ( E! p e. A Y = ( 2nd ` p ) <-> E! q e. `' A Y = ( 1st ` q ) ) ) |
68 |
67
|
adantr |
|- ( ( ( Rel A /\ Fun `' A ) /\ Y e. ran A ) -> ( E! p e. A Y = ( 2nd ` p ) <-> E! q e. `' A Y = ( 1st ` q ) ) ) |
69 |
5 68
|
mpbird |
|- ( ( ( Rel A /\ Fun `' A ) /\ Y e. ran A ) -> E! p e. A Y = ( 2nd ` p ) ) |