| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffun |
|- ( G : A --> B -> Fun G ) |
| 2 |
|
fcof |
|- ( ( F : B --> C /\ Fun G ) -> ( F o. G ) : ( `' G " B ) --> C ) |
| 3 |
1 2
|
sylan2 |
|- ( ( F : B --> C /\ G : A --> B ) -> ( F o. G ) : ( `' G " B ) --> C ) |
| 4 |
|
fimacnv |
|- ( G : A --> B -> ( `' G " B ) = A ) |
| 5 |
4
|
eqcomd |
|- ( G : A --> B -> A = ( `' G " B ) ) |
| 6 |
5
|
adantl |
|- ( ( F : B --> C /\ G : A --> B ) -> A = ( `' G " B ) ) |
| 7 |
6
|
feq2d |
|- ( ( F : B --> C /\ G : A --> B ) -> ( ( F o. G ) : A --> C <-> ( F o. G ) : ( `' G " B ) --> C ) ) |
| 8 |
3 7
|
mpbird |
|- ( ( F : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C ) |