Step |
Hyp |
Ref |
Expression |
1 |
|
fco3OLD.1 |
|- ( ph -> Fun F ) |
2 |
|
fco3OLD.2 |
|- ( ph -> Fun G ) |
3 |
|
funco |
|- ( ( Fun F /\ Fun G ) -> Fun ( F o. G ) ) |
4 |
1 2 3
|
syl2anc |
|- ( ph -> Fun ( F o. G ) ) |
5 |
|
fdmrn |
|- ( Fun ( F o. G ) <-> ( F o. G ) : dom ( F o. G ) --> ran ( F o. G ) ) |
6 |
4 5
|
sylib |
|- ( ph -> ( F o. G ) : dom ( F o. G ) --> ran ( F o. G ) ) |
7 |
|
dmco |
|- dom ( F o. G ) = ( `' G " dom F ) |
8 |
7
|
feq2i |
|- ( ( F o. G ) : dom ( F o. G ) --> ran ( F o. G ) <-> ( F o. G ) : ( `' G " dom F ) --> ran ( F o. G ) ) |
9 |
6 8
|
sylib |
|- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran ( F o. G ) ) |
10 |
|
rncoss |
|- ran ( F o. G ) C_ ran F |
11 |
10
|
a1i |
|- ( ph -> ran ( F o. G ) C_ ran F ) |
12 |
9 11
|
fssd |
|- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F ) |