Metamath Proof Explorer


Theorem fco3OLD

Description: Obsolete version of funcofd as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fco3OLD.1
|- ( ph -> Fun F )
fco3OLD.2
|- ( ph -> Fun G )
Assertion fco3OLD
|- ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F )

Proof

Step Hyp Ref Expression
1 fco3OLD.1
 |-  ( ph -> Fun F )
2 fco3OLD.2
 |-  ( ph -> Fun G )
3 funco
 |-  ( ( Fun F /\ Fun G ) -> Fun ( F o. G ) )
4 1 2 3 syl2anc
 |-  ( ph -> Fun ( F o. G ) )
5 fdmrn
 |-  ( Fun ( F o. G ) <-> ( F o. G ) : dom ( F o. G ) --> ran ( F o. G ) )
6 4 5 sylib
 |-  ( ph -> ( F o. G ) : dom ( F o. G ) --> ran ( F o. G ) )
7 dmco
 |-  dom ( F o. G ) = ( `' G " dom F )
8 7 feq2i
 |-  ( ( F o. G ) : dom ( F o. G ) --> ran ( F o. G ) <-> ( F o. G ) : ( `' G " dom F ) --> ran ( F o. G ) )
9 6 8 sylib
 |-  ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran ( F o. G ) )
10 rncoss
 |-  ran ( F o. G ) C_ ran F
11 10 a1i
 |-  ( ph -> ran ( F o. G ) C_ ran F )
12 9 11 fssd
 |-  ( ph -> ( F o. G ) : ( `' G " dom F ) --> ran F )