Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( F Fn X /\ Y e. X ) /\ x e. I ) -> Y e. X ) |
2 |
|
fconstmpt |
|- ( I X. { Y } ) = ( x e. I |-> Y ) |
3 |
2
|
a1i |
|- ( ( F Fn X /\ Y e. X ) -> ( I X. { Y } ) = ( x e. I |-> Y ) ) |
4 |
|
simpl |
|- ( ( F Fn X /\ Y e. X ) -> F Fn X ) |
5 |
|
dffn2 |
|- ( F Fn X <-> F : X --> _V ) |
6 |
4 5
|
sylib |
|- ( ( F Fn X /\ Y e. X ) -> F : X --> _V ) |
7 |
6
|
feqmptd |
|- ( ( F Fn X /\ Y e. X ) -> F = ( y e. X |-> ( F ` y ) ) ) |
8 |
|
fveq2 |
|- ( y = Y -> ( F ` y ) = ( F ` Y ) ) |
9 |
1 3 7 8
|
fmptco |
|- ( ( F Fn X /\ Y e. X ) -> ( F o. ( I X. { Y } ) ) = ( x e. I |-> ( F ` Y ) ) ) |
10 |
|
fconstmpt |
|- ( I X. { ( F ` Y ) } ) = ( x e. I |-> ( F ` Y ) ) |
11 |
9 10
|
eqtr4di |
|- ( ( F Fn X /\ Y e. X ) -> ( F o. ( I X. { Y } ) ) = ( I X. { ( F ` Y ) } ) ) |