Metamath Proof Explorer


Theorem fcod

Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fcod.1
|- ( ph -> F : B --> C )
fcod.2
|- ( ph -> G : A --> B )
Assertion fcod
|- ( ph -> ( F o. G ) : A --> C )

Proof

Step Hyp Ref Expression
1 fcod.1
 |-  ( ph -> F : B --> C )
2 fcod.2
 |-  ( ph -> G : A --> B )
3 fco
 |-  ( ( F : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C )
4 1 2 3 syl2anc
 |-  ( ph -> ( F o. G ) : A --> C )