Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> F : A --> B ) |
2 |
|
simplr |
|- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> G : B --> A ) |
3 |
|
simprr |
|- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> ( G o. F ) = ( _I |` A ) ) |
4 |
|
simprl |
|- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> ( F o. G ) = ( _I |` B ) ) |
5 |
1 2 3 4
|
fcof1od |
|- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> F : A -1-1-onto-> B ) |
6 |
1 2 3 4
|
2fcoidinvd |
|- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> `' F = G ) |
7 |
5 6
|
jca |
|- ( ( ( F : A --> B /\ G : B --> A ) /\ ( ( F o. G ) = ( _I |` B ) /\ ( G o. F ) = ( _I |` A ) ) ) -> ( F : A -1-1-onto-> B /\ `' F = G ) ) |