| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcof1od.f |
|- ( ph -> F : A --> B ) |
| 2 |
|
fcof1od.g |
|- ( ph -> G : B --> A ) |
| 3 |
|
fcof1od.a |
|- ( ph -> ( G o. F ) = ( _I |` A ) ) |
| 4 |
|
fcof1od.b |
|- ( ph -> ( F o. G ) = ( _I |` B ) ) |
| 5 |
|
fcof1 |
|- ( ( F : A --> B /\ ( G o. F ) = ( _I |` A ) ) -> F : A -1-1-> B ) |
| 6 |
1 3 5
|
syl2anc |
|- ( ph -> F : A -1-1-> B ) |
| 7 |
|
fcofo |
|- ( ( F : A --> B /\ G : B --> A /\ ( F o. G ) = ( _I |` B ) ) -> F : A -onto-> B ) |
| 8 |
1 2 4 7
|
syl3anc |
|- ( ph -> F : A -onto-> B ) |
| 9 |
|
df-f1o |
|- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
| 10 |
6 8 9
|
sylanbrc |
|- ( ph -> F : A -1-1-onto-> B ) |