Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 and fcofo . Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fcof1od.f | |- ( ph -> F : A --> B ) |
|
fcof1od.g | |- ( ph -> G : B --> A ) |
||
fcof1od.a | |- ( ph -> ( G o. F ) = ( _I |` A ) ) |
||
fcof1od.b | |- ( ph -> ( F o. G ) = ( _I |` B ) ) |
||
Assertion | fcof1od | |- ( ph -> F : A -1-1-onto-> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1od.f | |- ( ph -> F : A --> B ) |
|
2 | fcof1od.g | |- ( ph -> G : B --> A ) |
|
3 | fcof1od.a | |- ( ph -> ( G o. F ) = ( _I |` A ) ) |
|
4 | fcof1od.b | |- ( ph -> ( F o. G ) = ( _I |` B ) ) |
|
5 | fcof1 | |- ( ( F : A --> B /\ ( G o. F ) = ( _I |` A ) ) -> F : A -1-1-> B ) |
|
6 | 1 3 5 | syl2anc | |- ( ph -> F : A -1-1-> B ) |
7 | fcofo | |- ( ( F : A --> B /\ G : B --> A /\ ( F o. G ) = ( _I |` B ) ) -> F : A -onto-> B ) |
|
8 | 1 2 4 7 | syl3anc | |- ( ph -> F : A -onto-> B ) |
9 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
10 | 6 8 9 | sylanbrc | |- ( ph -> F : A -1-1-onto-> B ) |