| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcof1oinvd.f |
|- ( ph -> F : A -1-1-onto-> B ) |
| 2 |
|
fcof1oinvd.g |
|- ( ph -> G : B --> A ) |
| 3 |
|
fcof1oinvd.b |
|- ( ph -> ( F o. G ) = ( _I |` B ) ) |
| 4 |
3
|
coeq2d |
|- ( ph -> ( `' F o. ( F o. G ) ) = ( `' F o. ( _I |` B ) ) ) |
| 5 |
|
coass |
|- ( ( `' F o. F ) o. G ) = ( `' F o. ( F o. G ) ) |
| 6 |
|
f1ococnv1 |
|- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |
| 7 |
1 6
|
syl |
|- ( ph -> ( `' F o. F ) = ( _I |` A ) ) |
| 8 |
7
|
coeq1d |
|- ( ph -> ( ( `' F o. F ) o. G ) = ( ( _I |` A ) o. G ) ) |
| 9 |
|
fcoi2 |
|- ( G : B --> A -> ( ( _I |` A ) o. G ) = G ) |
| 10 |
2 9
|
syl |
|- ( ph -> ( ( _I |` A ) o. G ) = G ) |
| 11 |
8 10
|
eqtrd |
|- ( ph -> ( ( `' F o. F ) o. G ) = G ) |
| 12 |
5 11
|
eqtr3id |
|- ( ph -> ( `' F o. ( F o. G ) ) = G ) |
| 13 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
| 14 |
|
f1of |
|- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
| 15 |
|
fcoi1 |
|- ( `' F : B --> A -> ( `' F o. ( _I |` B ) ) = `' F ) |
| 16 |
1 13 14 15
|
4syl |
|- ( ph -> ( `' F o. ( _I |` B ) ) = `' F ) |
| 17 |
4 12 16
|
3eqtr3rd |
|- ( ph -> `' F = G ) |