Step |
Hyp |
Ref |
Expression |
1 |
|
fcof1oinvd.f |
|- ( ph -> F : A -1-1-onto-> B ) |
2 |
|
fcof1oinvd.g |
|- ( ph -> G : B --> A ) |
3 |
|
fcof1oinvd.b |
|- ( ph -> ( F o. G ) = ( _I |` B ) ) |
4 |
3
|
coeq2d |
|- ( ph -> ( `' F o. ( F o. G ) ) = ( `' F o. ( _I |` B ) ) ) |
5 |
|
coass |
|- ( ( `' F o. F ) o. G ) = ( `' F o. ( F o. G ) ) |
6 |
|
f1ococnv1 |
|- ( F : A -1-1-onto-> B -> ( `' F o. F ) = ( _I |` A ) ) |
7 |
1 6
|
syl |
|- ( ph -> ( `' F o. F ) = ( _I |` A ) ) |
8 |
7
|
coeq1d |
|- ( ph -> ( ( `' F o. F ) o. G ) = ( ( _I |` A ) o. G ) ) |
9 |
|
fcoi2 |
|- ( G : B --> A -> ( ( _I |` A ) o. G ) = G ) |
10 |
2 9
|
syl |
|- ( ph -> ( ( _I |` A ) o. G ) = G ) |
11 |
8 10
|
eqtrd |
|- ( ph -> ( ( `' F o. F ) o. G ) = G ) |
12 |
5 11
|
eqtr3id |
|- ( ph -> ( `' F o. ( F o. G ) ) = G ) |
13 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
14 |
1 13
|
syl |
|- ( ph -> `' F : B -1-1-onto-> A ) |
15 |
|
f1of |
|- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
16 |
14 15
|
syl |
|- ( ph -> `' F : B --> A ) |
17 |
|
fcoi1 |
|- ( `' F : B --> A -> ( `' F o. ( _I |` B ) ) = `' F ) |
18 |
16 17
|
syl |
|- ( ph -> ( `' F o. ( _I |` B ) ) = `' F ) |
19 |
4 12 18
|
3eqtr3rd |
|- ( ph -> `' F = G ) |