| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 2 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
| 3 |
|
eqimss |
|- ( dom F = A -> dom F C_ A ) |
| 4 |
|
cnvi |
|- `' _I = _I |
| 5 |
4
|
reseq1i |
|- ( `' _I |` A ) = ( _I |` A ) |
| 6 |
5
|
cnveqi |
|- `' ( `' _I |` A ) = `' ( _I |` A ) |
| 7 |
|
cnvresid |
|- `' ( _I |` A ) = ( _I |` A ) |
| 8 |
6 7
|
eqtr2i |
|- ( _I |` A ) = `' ( `' _I |` A ) |
| 9 |
8
|
coeq2i |
|- ( F o. ( _I |` A ) ) = ( F o. `' ( `' _I |` A ) ) |
| 10 |
|
cores2 |
|- ( dom F C_ A -> ( F o. `' ( `' _I |` A ) ) = ( F o. _I ) ) |
| 11 |
9 10
|
eqtrid |
|- ( dom F C_ A -> ( F o. ( _I |` A ) ) = ( F o. _I ) ) |
| 12 |
3 11
|
syl |
|- ( dom F = A -> ( F o. ( _I |` A ) ) = ( F o. _I ) ) |
| 13 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 14 |
|
coi1 |
|- ( Rel F -> ( F o. _I ) = F ) |
| 15 |
13 14
|
syl |
|- ( Fun F -> ( F o. _I ) = F ) |
| 16 |
12 15
|
sylan9eqr |
|- ( ( Fun F /\ dom F = A ) -> ( F o. ( _I |` A ) ) = F ) |
| 17 |
2 16
|
sylbi |
|- ( F Fn A -> ( F o. ( _I |` A ) ) = F ) |
| 18 |
1 17
|
syl |
|- ( F : A --> B -> ( F o. ( _I |` A ) ) = F ) |