Step |
Hyp |
Ref |
Expression |
1 |
|
relco |
|- Rel ( `' F o. F ) |
2 |
1
|
a1i |
|- ( F Fn X -> Rel ( `' F o. F ) ) |
3 |
|
dmco |
|- dom ( `' F o. F ) = ( `' F " dom `' F ) |
4 |
|
df-rn |
|- ran F = dom `' F |
5 |
4
|
imaeq2i |
|- ( `' F " ran F ) = ( `' F " dom `' F ) |
6 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
7 |
|
fndm |
|- ( F Fn X -> dom F = X ) |
8 |
6 7
|
eqtrid |
|- ( F Fn X -> ( `' F " ran F ) = X ) |
9 |
5 8
|
eqtr3id |
|- ( F Fn X -> ( `' F " dom `' F ) = X ) |
10 |
3 9
|
eqtrid |
|- ( F Fn X -> dom ( `' F o. F ) = X ) |
11 |
|
cnvco |
|- `' ( `' F o. F ) = ( `' F o. `' `' F ) |
12 |
|
cnvcnvss |
|- `' `' F C_ F |
13 |
|
coss2 |
|- ( `' `' F C_ F -> ( `' F o. `' `' F ) C_ ( `' F o. F ) ) |
14 |
12 13
|
ax-mp |
|- ( `' F o. `' `' F ) C_ ( `' F o. F ) |
15 |
11 14
|
eqsstri |
|- `' ( `' F o. F ) C_ ( `' F o. F ) |
16 |
15
|
a1i |
|- ( F Fn X -> `' ( `' F o. F ) C_ ( `' F o. F ) ) |
17 |
|
coass |
|- ( ( `' F o. F ) o. ( `' F o. F ) ) = ( `' F o. ( F o. ( `' F o. F ) ) ) |
18 |
|
coass |
|- ( ( F o. `' F ) o. F ) = ( F o. ( `' F o. F ) ) |
19 |
|
fnfun |
|- ( F Fn X -> Fun F ) |
20 |
|
funcocnv2 |
|- ( Fun F -> ( F o. `' F ) = ( _I |` ran F ) ) |
21 |
19 20
|
syl |
|- ( F Fn X -> ( F o. `' F ) = ( _I |` ran F ) ) |
22 |
21
|
coeq1d |
|- ( F Fn X -> ( ( F o. `' F ) o. F ) = ( ( _I |` ran F ) o. F ) ) |
23 |
|
dffn3 |
|- ( F Fn X <-> F : X --> ran F ) |
24 |
|
fcoi2 |
|- ( F : X --> ran F -> ( ( _I |` ran F ) o. F ) = F ) |
25 |
23 24
|
sylbi |
|- ( F Fn X -> ( ( _I |` ran F ) o. F ) = F ) |
26 |
22 25
|
eqtrd |
|- ( F Fn X -> ( ( F o. `' F ) o. F ) = F ) |
27 |
18 26
|
eqtr3id |
|- ( F Fn X -> ( F o. ( `' F o. F ) ) = F ) |
28 |
27
|
coeq2d |
|- ( F Fn X -> ( `' F o. ( F o. ( `' F o. F ) ) ) = ( `' F o. F ) ) |
29 |
17 28
|
eqtrid |
|- ( F Fn X -> ( ( `' F o. F ) o. ( `' F o. F ) ) = ( `' F o. F ) ) |
30 |
|
ssid |
|- ( `' F o. F ) C_ ( `' F o. F ) |
31 |
29 30
|
eqsstrdi |
|- ( F Fn X -> ( ( `' F o. F ) o. ( `' F o. F ) ) C_ ( `' F o. F ) ) |
32 |
16 31
|
unssd |
|- ( F Fn X -> ( `' ( `' F o. F ) u. ( ( `' F o. F ) o. ( `' F o. F ) ) ) C_ ( `' F o. F ) ) |
33 |
|
df-er |
|- ( ( `' F o. F ) Er X <-> ( Rel ( `' F o. F ) /\ dom ( `' F o. F ) = X /\ ( `' ( `' F o. F ) u. ( ( `' F o. F ) o. ( `' F o. F ) ) ) C_ ( `' F o. F ) ) ) |
34 |
2 10 32 33
|
syl3anbrc |
|- ( F Fn X -> ( `' F o. F ) Er X ) |