| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffvelcdm |
|- ( ( B : C --> D /\ x e. C ) -> ( B ` x ) e. D ) |
| 2 |
1
|
adantll |
|- ( ( ( A : D --> E /\ B : C --> D ) /\ x e. C ) -> ( B ` x ) e. D ) |
| 3 |
|
ffn |
|- ( B : C --> D -> B Fn C ) |
| 4 |
3
|
adantl |
|- ( ( A : D --> E /\ B : C --> D ) -> B Fn C ) |
| 5 |
|
dffn5 |
|- ( B Fn C <-> B = ( x e. C |-> ( B ` x ) ) ) |
| 6 |
4 5
|
sylib |
|- ( ( A : D --> E /\ B : C --> D ) -> B = ( x e. C |-> ( B ` x ) ) ) |
| 7 |
|
ffn |
|- ( A : D --> E -> A Fn D ) |
| 8 |
7
|
adantr |
|- ( ( A : D --> E /\ B : C --> D ) -> A Fn D ) |
| 9 |
|
dffn5 |
|- ( A Fn D <-> A = ( y e. D |-> ( A ` y ) ) ) |
| 10 |
8 9
|
sylib |
|- ( ( A : D --> E /\ B : C --> D ) -> A = ( y e. D |-> ( A ` y ) ) ) |
| 11 |
|
fveq2 |
|- ( y = ( B ` x ) -> ( A ` y ) = ( A ` ( B ` x ) ) ) |
| 12 |
2 6 10 11
|
fmptco |
|- ( ( A : D --> E /\ B : C --> D ) -> ( A o. B ) = ( x e. C |-> ( A ` ( B ` x ) ) ) ) |