Step |
Hyp |
Ref |
Expression |
1 |
|
fconstfv |
|- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) ) |
2 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
3 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
4 |
|
eqimss2 |
|- ( dom F = A -> A C_ dom F ) |
5 |
3 4
|
syl |
|- ( F Fn A -> A C_ dom F ) |
6 |
|
funconstss |
|- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) = B <-> A C_ ( `' F " { B } ) ) ) |
7 |
2 5 6
|
syl2anc |
|- ( F Fn A -> ( A. x e. A ( F ` x ) = B <-> A C_ ( `' F " { B } ) ) ) |
8 |
7
|
pm5.32i |
|- ( ( F Fn A /\ A. x e. A ( F ` x ) = B ) <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) |
9 |
1 8
|
bitri |
|- ( F : A --> { B } <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) |