| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fconst3 |  |-  ( F : A --> { B } <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) | 
						
							| 2 |  | cnvimass |  |-  ( `' F " { B } ) C_ dom F | 
						
							| 3 |  | fndm |  |-  ( F Fn A -> dom F = A ) | 
						
							| 4 | 2 3 | sseqtrid |  |-  ( F Fn A -> ( `' F " { B } ) C_ A ) | 
						
							| 5 | 4 | biantrurd |  |-  ( F Fn A -> ( A C_ ( `' F " { B } ) <-> ( ( `' F " { B } ) C_ A /\ A C_ ( `' F " { B } ) ) ) ) | 
						
							| 6 |  | eqss |  |-  ( ( `' F " { B } ) = A <-> ( ( `' F " { B } ) C_ A /\ A C_ ( `' F " { B } ) ) ) | 
						
							| 7 | 5 6 | bitr4di |  |-  ( F Fn A -> ( A C_ ( `' F " { B } ) <-> ( `' F " { B } ) = A ) ) | 
						
							| 8 | 7 | pm5.32i |  |-  ( ( F Fn A /\ A C_ ( `' F " { B } ) ) <-> ( F Fn A /\ ( `' F " { B } ) = A ) ) | 
						
							| 9 | 1 8 | bitri |  |-  ( F : A --> { B } <-> ( F Fn A /\ ( `' F " { B } ) = A ) ) |