Step |
Hyp |
Ref |
Expression |
1 |
|
rneq |
|- ( F = ( A X. { B } ) -> ran F = ran ( A X. { B } ) ) |
2 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. { B } ) = { B } ) |
3 |
2
|
eqeq2d |
|- ( A =/= (/) -> ( ran F = ran ( A X. { B } ) <-> ran F = { B } ) ) |
4 |
1 3
|
syl5ib |
|- ( A =/= (/) -> ( F = ( A X. { B } ) -> ran F = { B } ) ) |
5 |
4
|
adantl |
|- ( ( F Fn A /\ A =/= (/) ) -> ( F = ( A X. { B } ) -> ran F = { B } ) ) |
6 |
|
df-fo |
|- ( F : A -onto-> { B } <-> ( F Fn A /\ ran F = { B } ) ) |
7 |
|
fof |
|- ( F : A -onto-> { B } -> F : A --> { B } ) |
8 |
6 7
|
sylbir |
|- ( ( F Fn A /\ ran F = { B } ) -> F : A --> { B } ) |
9 |
|
fconst2g |
|- ( B e. _V -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |
10 |
8 9
|
syl5ib |
|- ( B e. _V -> ( ( F Fn A /\ ran F = { B } ) -> F = ( A X. { B } ) ) ) |
11 |
10
|
expd |
|- ( B e. _V -> ( F Fn A -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
12 |
11
|
adantrd |
|- ( B e. _V -> ( ( F Fn A /\ A =/= (/) ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
13 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
14 |
|
snprc |
|- ( -. B e. _V <-> { B } = (/) ) |
15 |
|
relrn0 |
|- ( Rel F -> ( F = (/) <-> ran F = (/) ) ) |
16 |
15
|
biimprd |
|- ( Rel F -> ( ran F = (/) -> F = (/) ) ) |
17 |
16
|
adantl |
|- ( ( { B } = (/) /\ Rel F ) -> ( ran F = (/) -> F = (/) ) ) |
18 |
|
eqeq2 |
|- ( { B } = (/) -> ( ran F = { B } <-> ran F = (/) ) ) |
19 |
18
|
adantr |
|- ( ( { B } = (/) /\ Rel F ) -> ( ran F = { B } <-> ran F = (/) ) ) |
20 |
|
xpeq2 |
|- ( { B } = (/) -> ( A X. { B } ) = ( A X. (/) ) ) |
21 |
|
xp0 |
|- ( A X. (/) ) = (/) |
22 |
20 21
|
eqtrdi |
|- ( { B } = (/) -> ( A X. { B } ) = (/) ) |
23 |
22
|
eqeq2d |
|- ( { B } = (/) -> ( F = ( A X. { B } ) <-> F = (/) ) ) |
24 |
23
|
adantr |
|- ( ( { B } = (/) /\ Rel F ) -> ( F = ( A X. { B } ) <-> F = (/) ) ) |
25 |
17 19 24
|
3imtr4d |
|- ( ( { B } = (/) /\ Rel F ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) |
26 |
25
|
ex |
|- ( { B } = (/) -> ( Rel F -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
27 |
14 26
|
sylbi |
|- ( -. B e. _V -> ( Rel F -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
28 |
13 27
|
syl5 |
|- ( -. B e. _V -> ( F Fn A -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
29 |
28
|
adantrd |
|- ( -. B e. _V -> ( ( F Fn A /\ A =/= (/) ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
30 |
12 29
|
pm2.61i |
|- ( ( F Fn A /\ A =/= (/) ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) |
31 |
5 30
|
impbid |
|- ( ( F Fn A /\ A =/= (/) ) -> ( F = ( A X. { B } ) <-> ran F = { B } ) ) |