Metamath Proof Explorer


Theorem fconst6

Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009) (Revised by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis fconst6.1
|- B e. C
Assertion fconst6
|- ( A X. { B } ) : A --> C

Proof

Step Hyp Ref Expression
1 fconst6.1
 |-  B e. C
2 fconst6g
 |-  ( B e. C -> ( A X. { B } ) : A --> C )
3 1 2 ax-mp
 |-  ( A X. { B } ) : A --> C