Step |
Hyp |
Ref |
Expression |
1 |
|
fconst7.p |
|- F/ x ph |
2 |
|
fconst7.x |
|- F/_ x F |
3 |
|
fconst7.f |
|- ( ph -> F Fn A ) |
4 |
|
fconst7.b |
|- ( ph -> B e. V ) |
5 |
|
fconst7.e |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
6 |
|
fvexd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. _V ) |
7 |
5 6
|
eqeltrrd |
|- ( ( ph /\ x e. A ) -> B e. _V ) |
8 |
|
snidg |
|- ( B e. _V -> B e. { B } ) |
9 |
7 8
|
syl |
|- ( ( ph /\ x e. A ) -> B e. { B } ) |
10 |
5 9
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. { B } ) |
11 |
1 10
|
ralrimia |
|- ( ph -> A. x e. A ( F ` x ) e. { B } ) |
12 |
|
nfcv |
|- F/_ x A |
13 |
|
nfcv |
|- F/_ x { B } |
14 |
12 13 2
|
ffnfvf |
|- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) e. { B } ) ) |
15 |
3 11 14
|
sylanbrc |
|- ( ph -> F : A --> { B } ) |
16 |
|
fconst2g |
|- ( B e. V -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |
17 |
4 16
|
syl |
|- ( ph -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |
18 |
15 17
|
mpbid |
|- ( ph -> F = ( A X. { B } ) ) |