Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( x = B -> { x } = { B } ) |
2 |
1
|
xpeq2d |
|- ( x = B -> ( A X. { x } ) = ( A X. { B } ) ) |
3 |
|
feq1 |
|- ( ( A X. { x } ) = ( A X. { B } ) -> ( ( A X. { x } ) : A --> { x } <-> ( A X. { B } ) : A --> { x } ) ) |
4 |
|
feq3 |
|- ( { x } = { B } -> ( ( A X. { B } ) : A --> { x } <-> ( A X. { B } ) : A --> { B } ) ) |
5 |
3 4
|
sylan9bb |
|- ( ( ( A X. { x } ) = ( A X. { B } ) /\ { x } = { B } ) -> ( ( A X. { x } ) : A --> { x } <-> ( A X. { B } ) : A --> { B } ) ) |
6 |
2 1 5
|
syl2anc |
|- ( x = B -> ( ( A X. { x } ) : A --> { x } <-> ( A X. { B } ) : A --> { B } ) ) |
7 |
|
vex |
|- x e. _V |
8 |
7
|
fconst |
|- ( A X. { x } ) : A --> { x } |
9 |
6 8
|
vtoclg |
|- ( B e. V -> ( A X. { B } ) : A --> { B } ) |